

**Rajeev Gandhi Memorial College of Engineering and Technology** 

AUTONOMOUS

Nandyal - 518501, A. P., India

## (A0491203) ELECTRONIC DEVICES AND CIRCUITS LAB

## COURSE OBJECTIVES:

This Lab provides the students to get an electrical model for various semiconductor devices. Students can find and plot V\_I characteristics of all semiconductor devices. Student learns the practical applications of the devices. They can learn and implement the concept of the feedback and frequency response of the small signal amplifier

## **COURSE OUTCOMES:**

- Students able to learn electrical model for various semiconductor devices and learns the practical applications of the semiconductor devices.
- Understand and analyse the applications of PN junction diode (Clipper, Clamper, Half wave rectifier and Full wave rectifier with and without filters)
- Understand the application of the Zener diode experimentally.
- Analyse the characteristics of different electronic devices such as PN diode, BJT and JFET
- Analyse the characteristics of MOSFET and CMOS inverter.

#### MAPPING WITH COs & POs:

|     | PO1 | PO2 | PO3 | PO4 | PO5 | PO6 | PO7 | PO8 | PO9 | PO10 | PO11 | PO12 | PSO1 | PSO2 | PSO3 |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|------|------|
| CO1 | 3   |     |     |     | 2   |     |     |     | 3   |      |      |      | 2    |      | 1    |
| CO2 | 3   | 1   | 2   |     | 2   |     |     |     | 3   |      |      |      | 2    | 1    |      |
| CO3 | 3   | 3   | 2   | 2   | 1   | 2   |     |     | 3   |      | 2    |      | 2    | 2    |      |
| CO4 | 3   | 1   | 1   | 1   |     | 1   |     |     | 3   |      |      |      | 1    | 2    | 1    |
| CO5 | 3   | 2   | 1   | 2   |     | 2   |     |     | 3   |      | 2    |      | 1    | 1    | 1    |

## (For Laboratory examination – Minimum of 8 experiments)

- 1) PN Junction diode characteristics.
- 2) Zener diode characteristics and Zener as a Regulator.
- 3) Design a clipper circuit using PN junction diode.
- 4) Design a clipper circuit using Zener diode.
- 5) Design a clamper circuit using PN junction diode.
- 6) Rectifier without filters (Full wave & Half wave).
- 7) Rectifier with filters (Full wave & Half wave).
- 8) Transistor CB characteristics (Input and Output).
- 9) Transistor CE characteristics (Input and Output).
- 10) Design and verification of BJT biasing techniques
- 11) FET characteristics.
- 12) MOSFET characteristics.
- 13) Design and verification of MOSFET biasing techniques
- 14) CMOS inverter

#### **Equipment required for Laboratories:**

| 1) | Regulated Power supplies (RPS)     | - | 0-30v                                     |
|----|------------------------------------|---|-------------------------------------------|
| 2) | CROs                               | - | 0-20M Hz.                                 |
| 3) | Function Generators                | - | 0-1 M Hz.                                 |
| 4) | Multimeters                        |   |                                           |
| 5) | Decade Resistance Boxes/Rheostats  |   |                                           |
| 6) | Decade Capacitance Boxes           |   |                                           |
| 7) | Micro Ammeters (Analog or Digital) | - | 0-20 μΑ, 0-50μΑ, 0-100μΑ, 0-200μΑ         |
| 8) | Voltmeters (Analog or Digital)     | - | 0-50V, 0-100V, 0-250V                     |
| 9) | Electronic Components              | - | Resistors, Capacitors, BJTs, LCDs, SCRs,  |
|    |                                    |   | UJTs, FETs, LEDs, MOSFETs, Diodes         |
|    |                                    |   | (Ge& Si type), Transistors (NPN&PNP type) |

## R.G.M.COLLEGE OF ENGINEERING & TECHNOLOGY, NANDYAL – 518 501 DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

## II B.Tech., I-Semester

## Academic Year: 2022-23

| II D. I CUI., I-Schlestel |                   |                      |                 | Acauchine Teat. 2022-25 |           |                      |                  |           |
|---------------------------|-------------------|----------------------|-----------------|-------------------------|-----------|----------------------|------------------|-----------|
|                           | w.e.f: 07-10-2022 |                      |                 |                         | A-Section | RB2130               | <b>B-Section</b> | RB2010    |
|                           |                   |                      |                 |                         | C-Section | RB2020               | D-Section        | RB2030    |
|                           |                   | 1                    | 2               | 3                       | 4         | 5                    | 6                | 7         |
| Period/                   | Section           | 9.00 AM              | 9.50 AM         | 11.00 AM                | 11.50 AM  | 1.50 PM              | 2.40 PM          | 3.30 PM   |
| Day                       | Section           | То                   | То              | То                      | То        | То                   | То               | То        |
|                           |                   | 9.50 AM              | 10.40 AM        | 11.50 AM                | 12.40 PM  | 2.40 PM              | 3.30 PM          | 4.20 PM   |
|                           | А                 | SS                   | VC&CV           | MEFA                    | DTI       | DLCD                 | EDC              | EDC       |
| MON                       | В                 | DLCD                 | EDC             | SS                      | MEFA      | VC&CV                | DTI              | SS        |
| WON                       | С                 | DTI                  | EDC             | SS                      | DLCD      | ]                    | EDCLab/BS La     | b/EE Lab  |
|                           | D                 | DLCD                 | SS              | EDC                     | VC&CV     | ]                    | EDCLab/BS La     | b/EE Lab  |
|                           | А                 | EDC                  | Lab/BS Lab/EE L | .ab                     | SS        | EDC                  | VC&CV            | DLCD      |
| THE                       | В                 | EDC                  | Lab/BS Lab/EE L | .ab                     | DTI       | SS                   | DLCD             | EDC       |
| TUL                       | С                 | DLCD                 | MEFA            | SS                      | VC&CV     | EDC                  | VC&CV            | DTI       |
|                           | D                 | SS                   | SS              | EDC                     | EDC       | DLCD                 | MEFA             | VC&CV     |
|                           | А                 | SS                   | EDC             | DLCD                    | DTI       | VC&CV                | SS               | MEFA      |
| WED                       | В                 | DLCD                 | DTI             | MEFA                    | SS        | VC&CV                | VC&CV            | EDC       |
| WED                       | С                 | EDC                  | Lab/BS Lab/EE L | EDC                     | MEFA      | SS                   | DLCD             |           |
|                           | D                 | EDCLab/BS Lab/EE Lab |                 |                         | SS        | DLCD                 | EDC              | MEFA      |
|                           | А                 | DLCD MEFA VC&C       |                 | VC&CV                   | EDC       | EDCLab/BS Lab/EE Lab |                  |           |
| THU                       | В                 | VC&CV                | MEFA            | EDC                     | DLCD      | ]                    | EDCLab/BS La     | b/EE Lab  |
| 1110                      | С                 | EDC                  | Lab/BS Lab/EE L | .ab                     | VC&CV     | EDC                  | SS               | DLCD      |
|                           | D                 | EDC                  | Lab/BS Lab/EE L | .ab                     | DLCD      | DLCD                 | MEFA             | DTI       |
|                           | А                 | EDC                  | Lab/BS Lab/EE L | .ab                     | DTI       | MEFA                 | DLCD             | SS        |
| FRI                       | В                 | EDC                  | Lab/BS Lab/EE L | .ab                     | VC&CV     | SS                   | MEFA             | DLCD      |
| TKI                       | С                 | DLCD                 | MEFA            | VC&CV                   | DTI       | SS                   | EDC              | MEFA      |
|                           | D                 | EDC                  | DTI             | DLCD                    | VC&CV     | MEFA                 | VC&CV            | SS        |
|                           | Α                 | SS                   | EDC             | VC&CV                   | MEFA      | DLCD                 |                  |           |
| SAT                       | В                 | EDC                  | SS              | DLCD                    | EDC       | MEFA                 | Б                |           |
| SAI                       | С                 | SS                   | VC&CV           | EDC                     | MEFA      | DLCD                 |                  | <b>HH</b> |
|                           | D                 | DTI                  | MEFA            | VC&CV                   | SS        | EDC                  |                  |           |

| Subject | Section | Name of the Faculty       |
|---------|---------|---------------------------|
| VC&CV   | А       | Dr.K.V.Surya Narayana Rao |
| EDC     | А       | Dr.M.Chennakesavalu       |
| DLCD    | А       | Dr.K.Mallikarjuna         |
| S&S     | А       | Mr.P.Chandra Sekhar       |
| MEFA    | А       | Mr.K Rama Krishna         |
| DTI     | А       | Mr.Shaik.Asif Basha       |
| EDC Lab | А       | Dr.MCK/Mr.KMVK/YPKR       |
| EE Lab  | A       | Mr.C.Ashok Kumar          |
| BS Lab  | А       | Mr.PCS/Mr.JLMK/KSR        |

| Subject | Section | Name of the Faculty       |
|---------|---------|---------------------------|
| VC&CV   | C       | Dr.P.Chandra Sekhar Reddy |
| EDC     | C       | Mr.T.Tirumalesh           |
| DLCD    | C       | Mr.P.Mahesh               |
| S&S     | C       | Mrs.M.Hemalatha           |
| MEFA    | C       | Dr.Aliya Sulthana         |
| DTI     | C       | Smt.B.Indu                |
| EDC Lab | C       | Dr.AS/Dr.CV/Mr.TT         |
| EE Lab  | C       | Dr.A.Suresh Kumar         |
| BS Lab  | C       | Mr.D.UsenMr.SAB/BI        |

| Subject Section |         | Name of the Faculty       |  |  |  |
|-----------------|---------|---------------------------|--|--|--|
| VC&CV B         |         | Dr.P.Sreedevi             |  |  |  |
| EDC             | В       | Mr.K.Vijaya Kamalnadh     |  |  |  |
| DLCD            | В       | Mr.Y.Praveen Kumar Reddy  |  |  |  |
| S&S             | В       | Mr.P.Chandra Sekhar       |  |  |  |
| MEFA            | В       | Mr.Rajasekhar             |  |  |  |
| DTI             | В       | Dr.J.Sofia Priyadarshini  |  |  |  |
| EDC Lab         | В       | Dr.MCK/Mr.KMVK/YPKR       |  |  |  |
| EE Lab          | В       | Mr.C.Ashok Kumar          |  |  |  |
| BS Lab          | В       | Mr.PCS/Mr.JLMK/KSR        |  |  |  |
|                 |         |                           |  |  |  |
| Subject         | Section | Name of the Faculty       |  |  |  |
| VC&CV           | D       | Dr.P.Chandra Sekhar Reddy |  |  |  |
| EDC             | D       | Dr.A.Sathish              |  |  |  |
| DLCD            | D       | Miss.N.Fouzia Sulthana    |  |  |  |
| S&S             | D       | Dr.R.Hanuma Naik          |  |  |  |
| MEFA            | D       | Dr.Aliya Sulthana         |  |  |  |
| DTI             | D       | Smt.B.Indu                |  |  |  |
| EDC Lab         | D       | Dr.AS/Dr.CV/Mr.TT         |  |  |  |
| EE Lab          | D       | Dr.A.Suresh Kumar         |  |  |  |
| BS Lab          | D       | Mr.D.Usen/Mr.SAB/BI       |  |  |  |

Principal Dr.T.Jaya Chandra Prasad Dr.K.Mallikarjuna HOD OF ECE

# STUDENT PERFORMANCE EVALUATION

## **EXTERNAL EVALUATION (50 MARKS)**

| CIRCUIT DIAGRAM                | 10M |
|--------------------------------|-----|
| PROCEDURE                      | 5M  |
| CONNECTIONS                    | 5M  |
| CALCULATIONS, GRAPHS & RESULTS | 10M |
| OBSERVATIONS                   | 10M |
| VIVA VOCE                      | 10M |

## **INTERNAL EVALUATION (25 MARKS)**

| DAY-DAY WORK & OBSERAVTION | 10M |
|----------------------------|-----|
| RECORD                     | 10M |
| INTERNAL EXAM              | 5M  |

# ELECTRONIC DEVICES AND CIRCUITS LAB MANUAL

II-B.Tech, I-Semester ECE

RGM-R-2020



ESTD. 1995

## **DEPARTMENT OF ECE**

## **RGM COLLEGE OF ENGG. & TECHNOLOGY**

AUTONOMOUS

OFFERING B.Tech, & M.Tech. Courses Accredited by NBA

Approved by A.I.C.T.E., New Delhi, Affiliated to JNT University, Anantapuramu

NANDYAL- 518501, KURNOOL (Dt.), A.P.

## INDEX

| S.No | Particulars / Name of the Experiment                                   | Page No. |
|------|------------------------------------------------------------------------|----------|
|      | Evaluation Procedure for Internal Laboratory Examination               |          |
|      | Evaluation Procedure for External Laboratory Examination               |          |
|      | Study of CRO and its uses                                              |          |
| 1    | VI-Characteristics of PN-Junction Diode                                |          |
| 2    | VI- and Load Characteristics of Zener Diode                            |          |
| 3    | Half wave Rectifier Without Filter                                     |          |
| 4    | Full wave Rectifier Without Filters                                    |          |
| 5    | Full wave Rectifier With Filters                                       |          |
| 6    | Non-linear wave shaping - Clipping Circuits                            |          |
| 7    | Non-linear wave shaping – Clamping Circuits                            |          |
| 8    | Common Base Configuration of BJT (Input and Output Characteristics)    |          |
| 9    | Common Emitter Configuration of BJT (Input and Output Characteristics) |          |
| 10   | Drain and Transfer Characteristics of JFET                             |          |
|      | APPENDIX                                                               |          |

## **Evaluation Procedure for Internal Laboratory Examination**

• For Practical subjects, there shall be a continuous evaluation during the semester for 25 internal marks and 50 external (End Examination) marks. Out of 25 marks (internal), 15 marks will be awarded by observing day-to-day performance and 5 marks will be awarded by conducting an internal lab test at the end of the semester and 5 marks will be awarded for any creativity/innovation/additional learning in lab beyond prescribed set of experiments etc.

## • Day-to-day Performance evaluation:

- The concerned Faculty has to do necessary corrections in the observation book of each student with explanation and has to evaluate each lab experiment.
- Concerned Faculty should enter the marks in index page of the record and observation book & also at the end of each experiment with signature.

## • Internal Laboratory examination:

Five marks will be awarded for internal Lab exam and the distribution of the marks is as given below:

| 1.   | Circuit Diagram                                             | : 01 Marks     |
|------|-------------------------------------------------------------|----------------|
| 2.   | Procedure and Expected Waveforms                            | : 01 Marks     |
| 3.   | Observations and Graph                                      | : 01 Marks     |
| 4.   | Result                                                      | : 01 Marks     |
| 5.   | Viva voce                                                   | : 01 Marks     |
| iter | nal lab exam will be conducted by the Faculty member in-cha | arge along wit |

Internal lab exam will be conducted by the Faculty member in-charge along with Associate Faculty members

## **Evaluation Procedure for External Laboratory Examination:**

- This examination will be conducted by the External examiner (from other college), internal examiner (faculty in-charge of the lab) and one faculty member of the same department (who have more knowledge in the concern lab), recommended by Head of the Department with the approval of Principal.
- The maximum marks for this examination is 50.
- The distribution of marks for the evaluation is as follows.

| 1) | Circuit Diagram                  | : 10Marks  |
|----|----------------------------------|------------|
| 2) | Procedure and Expected waveforms | : 10 Marks |
| 3) | Connections                      | : 05 Marks |
| 4) | Observations and calculations    | : 10 Marks |
| 5) | Result with graphs               | : 05 Marks |
| 6) | Viva voce                        | : 10 Marks |

## STUDY OF CRO AND IT'S USES

#### AIM:

- 1) To measure the frequency and amplitude of different waves (sinusoidal, square and triangular).
- 2) To measure the unknown frequency of the signal.
- 3) To find the phase shift introduced by an RC network.

## **APPARATUS REQUIRED:**

- 1) Cathode Ray Oscilloscope (CRO)
- 2) Function generators –2, Connecting wires-15, CRO probes: BNC-BNC type- 2 nos. & BNC-Crocodile Clips type 2 nos.
- 3) Resistor  $-1 \text{ K}\Omega$
- 4) Capacitor  $-1 \mu F$

## **CONNECTION DIAGRAMS:**



Figure 1 Connection diagram for measurement of amplitude and frequency



Figure 2 Connection diagram for Measurement of unknown frequency

## CIRCUIT DIAGRAM:



Figure 3 Circuit Diagram for Phase shift measurement

## **PROCEDURE:**

#### Measurement of amplitude and frequency

- 1) Verify the functionality of CRO, Function Generator and CRO probes.
- 2) Connect the output of the function generator to one of the two channels of CRO as shown in fig. 1.
- 3) Adjust volt/div, time/div and Var. knobs such that the wave forms displayed in CRO are observable in all aspects.
- 4) Measure the amplitude of the signal in divisions and volts/div value. Note down the values in corresponding columns of the observation table.
- 5) Measure the time-period in divisions and time/div value. Note down the values in corresponding columns of the observation table.
- 6) Fill up the remaining columns of the observation table through the calculations.

#### **Finding unknown frequency**

- 1) Connect the signal of known frequency to X-channel and the signal of unknown frequency to Y-channel of CRO as shown in fig.2.
- 2) Keep the CRO in X-Y mode and vary the known frequency of the signal in X-Channel until we get observable Lissajous patterns
- 3) Note down the number of loops along the X-axis and number of loops along the Y-axis and calculate the N value using the formulae:

 $N = \frac{\text{number of loops along the x-axis}}{\text{number of loops along the y-axis}}$ 

4) Then calculate the unknown frequency using the formulae  $N = \frac{f_y}{c}$ 



Figure 4 Measurement of unknown frequency using Lissajous patterns

## Measurement of phase shift

- 1) Make the connections as per the circuit diagram of fig.3.
- 2) Connect input signal of the circuit to the X-channel and it's output signal to the Y- channel of the CRO and keep the CRO in XY-mode.
- 3) Adjust the Volt/div knob to get the ellipse
- 4) Note down the values of A and B from the ellipse on the CRO screen as shown in fig.5
- 5) Calculate phase shift using the following expression Phase shift  $\varphi = \sin^{-1}(B/A)$  (refer fig.5)
- 6) Calculate theoretical value of phase shift using following equation Theoretical phase shift  $\varphi = \tan^{-1}(\omega RC)$
- 7) Compare theoretical and practical phase shift values.



Figure 5 Measurement of phase shift from CRO.

## **OBSERVATIONS:**

Table 1 Measurement of amplitude and frequency

| S No | Type of the signal | Amplitude<br>in<br>divisions<br>(D) | Volts/div<br>(S) | Amplitude<br>D * S<br>(volts) | Time in<br>Divisions<br>(D) | Time/div<br>(S) | Time<br>period<br>T=D*S<br>(seconds) | Frequenc<br>y<br>f=1/T |
|------|--------------------|-------------------------------------|------------------|-------------------------------|-----------------------------|-----------------|--------------------------------------|------------------------|
| 1    |                    |                                     |                  |                               |                             |                 |                                      |                        |
| 2    |                    |                                     |                  |                               |                             |                 |                                      |                        |
| 3    |                    |                                     |                  |                               |                             |                 |                                      |                        |
| 4    |                    |                                     |                  |                               |                             |                 |                                      |                        |
| 5    |                    |                                     |                  |                               |                             |                 |                                      |                        |
| 6    |                    |                                     |                  |                               |                             |                 |                                      |                        |
| 7    |                    |                                     |                  |                               |                             |                 |                                      |                        |
| 8    |                    |                                     |                  |                               |                             |                 |                                      |                        |
| 9    |                    |                                     |                  |                               |                             |                 |                                      |                        |
| 10   |                    |                                     |                  |                               |                             |                 |                                      |                        |

 Table 2 Measurement of unknown frequency

| S.No | Known<br>frequency<br>$f_x$ | Lissajous<br>patterns | $N = \frac{\text{no. of loops along x-axis}}{\text{no. of loops along y-axis}}$ | Unknown<br>frequency<br>$f_y = N \cdot f_x$ | Unknown<br>frequency<br>From FG* |
|------|-----------------------------|-----------------------|---------------------------------------------------------------------------------|---------------------------------------------|----------------------------------|
| 1    |                             |                       |                                                                                 |                                             |                                  |
| 2    |                             |                       |                                                                                 |                                             |                                  |
| 3    |                             |                       |                                                                                 |                                             |                                  |
| 4    |                             |                       |                                                                                 |                                             |                                  |
| 5    |                             |                       |                                                                                 |                                             |                                  |
| 6    |                             |                       |                                                                                 |                                             |                                  |
| 7    |                             |                       |                                                                                 |                                             |                                  |
| 8    |                             |                       |                                                                                 |                                             |                                  |
| 9    |                             |                       |                                                                                 |                                             |                                  |
| 10   |                             |                       |                                                                                 |                                             |                                  |

\*FG - Function Generator

## **CALCULATIONS:**

 $N = \frac{\text{no. of loops along x-axis}}{\text{no. of loops along y-axis}}$ 

 $f_{y} = N.f_{x}$ 

Phase shift  $\varphi = \sin^{-1}(B/A)$ 

Theoretical phase shift  $\varphi = \tan^{-1}(\omega RC)$ 

## **THEORY:**

## **DISCUSSION:**

## **CONCLUTION:**

#### VIVA OUESTONS

- [1] What is CRO?
- [2] What are the uses of CRO?
- [3] Which effect is employed by the CRO?
- [4] What is the heart of the CRO.
- [5] To which plates of the CRO the signal which is to be displayed is connected?
- [6] What signal is connected to horizontal deflection plates CRO?
- [7] What is the example for electromagnetic deflection?
- [8] What is deflection sensitivity?
- [9] What are the various potentials used for various anodes of CRT?
- [10] What electrical quantity may not be measured directly by CRO?
- [11] What are the applications of CRO?
- [12] What is the charge of an electron?
- [13] What is the mass of an electron?
- [14] What is the path of an electron in uniform electric field between plates?
- [15] What is the path of an electron in uniform magnetic field?
- [16] Define electrostatic deflection sensitivity of CRT?
- [17] Define magnetic deflection sensitivity of CRT?
- [18] Write the equation for the electrostatic deflection of an electron beam on the CRT screen.
- [19] Write the equation for the electrostatic deflection Sensitivity of CRT.
- [20] Write the equation for the magnetic deflection of an electron beam on the CRT screen.
- [21] Write the equation for the magnetic deflection Sensitivity of CRT.

#### VI-CHARACTERISTICS OF PN JUNCTION DIODE

## AIM:

- 1) To establish the electrical equivalent model of the given device by obtaining the forward and reverse characteristics of the PN-diode.
- 2) To find the type of material used for manufacturing the diode.
- 3) To obtain the static and dynamic resistances of the diode from the characteristics.

## **APPARATUS:**

- 1) OA76 Diode, BY127 Diode, DR25 Diode, IN4007 Diode
- 2) Ammeters (0-10m.A), (0-500µA)
- 3) Voltmeter (0-1V)
- 4) Regulated Power Supply.
- 5) Resistor- 1 K $\Omega$  and
- 6) Connecting Wires.

## **CIRCUIT DIAGRAMS:**



Figure 1 Measurement of Voltage and current in forward biasing



Figure 2 Measurement of Voltage and current in reverse biasing

## **PROCEDURE:**

- 1) Connect the circuit as per the circuit diagram of fig. 1.
- 2) Set the RPS to minimum position and switch on.
- 3) By slowly varying the RPS observe and tabulate the values of Voltmeter and ammeter.
- 4) Take the voltmeter reading at which the current starts raising as cut-in voltage
- 5) Plot the graph between  $V_{f}$ , and  $I_{f}$ .
- 6) From the graph calculate static and dynamic resistances (Fig. 5)
- 7) Repeat the same procedure for another diode.
- 8) Find the type of diode depending upon the cut in voltage.
- 9) For reverse bias characteristics connect the circuit as per the diagram of fig. 2.

## **EXPECTED GRAPHS:**



Figure 3 V-I characteristics of Ge and Si diodes in forward bias



Figure 4 V-I characteristics of Ge diode in reverse bias (IR is in nano amperes for Si diode)

## **OBSERVATIONS:**

| S No | Diode voltage            | Diode current        |
|------|--------------------------|----------------------|
|      | V <sub>F</sub> III VOIts | I <sub>F</sub> in mA |
|      |                          |                      |
|      |                          |                      |
|      |                          |                      |
|      |                          |                      |
|      |                          |                      |
|      |                          |                      |
|      |                          |                      |
|      |                          |                      |
|      |                          |                      |
|      |                          |                      |
|      |                          |                      |
|      |                          |                      |

## Table 2 Reverse characteristics

| S No | Diode voltage<br>V <sub>r</sub> in volts | Diode current $I_r$ in $\mu A$ |  |
|------|------------------------------------------|--------------------------------|--|
|      |                                          |                                |  |
|      |                                          |                                |  |
|      |                                          |                                |  |
|      |                                          |                                |  |
|      |                                          |                                |  |
|      |                                          |                                |  |
|      |                                          |                                |  |
|      |                                          |                                |  |
|      |                                          |                                |  |
|      |                                          |                                |  |
|      |                                          |                                |  |
|      |                                          |                                |  |
|      |                                          |                                |  |
|      |                                          |                                |  |

## CALCULATIONS:



Figure 5 Calculation of Static and Dynamic Resistances

Static resistance =  $V_F/I_F$  = A/B (from fig.5) Dynamic resistance =  $\Delta V_F/\Delta I_F$  = (C-E) / (D-F) (from fig.5)

Reverse saturation current  $I_o = \frac{I_F}{\left(e^{(V/\eta V_T)} - 1\right)}$ 

Where  $V_T = 26 \mbox{ mV}$  - Volt equivalent of temperature,  $\eta = 1$  for Ge  $\mbox{ \& } \eta = 2$  for Si

## **RESULT:**

Cut in voltage of Ge diode = Cut in voltage of Si diode = Static resistance of Ge diode= Static resistance of Si diode = Dynamic resistance of Ge diode = Reverse saturation current of Ge diode = Reverse saturation current of Si diode =

## **THEORY:**

## **DISCUSSION:**

## **CONCLUTION**

#### **VIVA QUESTIONS:**

- 1) What are the applications of diode?
- 2) Define the cut-in voltage of the diode.
- 3) What is the cut-in voltage of the silicon diode?
- 4) What is the cut-in voltage of the Germanium diode?
- 5) What is the typical value of depletion region width?
- 6) What is the reverse saturation current of diode?
- 7) What is forward biasing?
- 8) What is reverse biasing?
- 9) What is doping level of an ordinary diode?
- 10) What are the specifications of diode?
- 11) What is PIV rating of diode?
- 12) What is depletion region?
- 13) What is potential barrier?
- 14) What happens to the depletion region on forward biasing?
- 15) What happens to the depletion region on reverse biasing?
- 16) Define static resistance of the pn-junction diode.
- 17) Define dynamic resistance of the pn-junction diode.
- 18) Define breakdown voltage of the diode?
- 19) What is varactor diode?
- 20) What is tunnel diode?
- 21) What is Zener diode?
- 22) What are the differences between normal and Zener diodes?
- 23) Draw the VI-characteristics of normal diode.
- 24) Draw the VI-characteristics of zener diode.
- 25) Draw the VI-characteristics of tunnel diode.
- 26) Write the diode current equation.
- 27) Define rectifying and non-rectifying junction.
- 28) How the depletion region penetrates into equally doped p- and n- type materials?
- 29) How the depletion region penetrates into unequally doped p- and n- type materials?
- 30) What is Schottky diode?

## VI AND LOAD CHARACTERISTICS OF ZENER DIODE

## AIM:

- 1) To study the VI-Characteristics of given Zener diode.
- 2) To study the load characteristics of given Zener diode.
- 3) To calculate the Zener resistance of the given Zener diode.

## **APPARATUS:**

- 1) IZ 5.1 zener diode.
- 2) Ammeters (0-30 mA) -2
- 3) Voltmeter (0—10V)
- 4) Regulated Power Supply (RPS).
- 5) Resistor-1KΩ
- 6) Decade Resistance Box and Connecting Wires.

## **CIRCUIT DIAGRAM:**



Figure 1 Circuit Diagram to study the VI-Characteristics of Zener diode



Figure 2 Circuit Diagram to study the load characteristics of Zener diode

## PROCEDURE

## ZENER CHARACTERISTICS

- 1) Make the connections as per the circuit diagram of fig. 1
- 2) By slowly increasing the input voltage, tabulate the readings of Voltmeter and ammeter.
- 3) Plot the graph between  $I_Z$  and  $V_Z$  (VI-Characteristics).
- 4) The voltage at which the current starts increasing is called the breakdown voltage.
- 5) From the breakdown region calculate the zener resistance of the Zener diode.

## LOAD CHARACTERISTICS

- 1) Make the Connections as per the circuit diagram of fig(2)
- 2) Setting RPS value to 30 V vary the load in steps and tabulate the readings of total current, load current and Zener voltage.
- 3) Plot the graph between  $I_L$  and  $V_z$  (load characteristics).

## **EXPECTED GRAPHS:**



Figure 3 VI-Characteristics of Zener Diode



Figure 4 Load Characteristics Zener Diode

## **OBSERVATIONS:**

## 

## Table 2 Zener diode load characteristics

| S No | $R_{\rm L}$ in $\Omega$ | V <sub>Z</sub> in volts | I <sub>L</sub> in mA | I <sub>T</sub> in mA | $I_{\rm T}$ - $I_{\rm L}$ = $I_{\rm Z}$ in mA |
|------|-------------------------|-------------------------|----------------------|----------------------|-----------------------------------------------|
| 1    |                         |                         |                      |                      |                                               |
| 2    |                         |                         |                      |                      |                                               |
| 3    |                         |                         |                      |                      |                                               |
| 4    |                         |                         |                      |                      |                                               |
| 5    |                         |                         |                      |                      |                                               |
| 6    |                         |                         |                      |                      |                                               |
| 7    |                         |                         |                      |                      |                                               |
| 8    |                         |                         |                      |                      |                                               |
| 9    |                         |                         |                      |                      |                                               |
| 10   |                         |                         |                      |                      |                                               |

## **CALCULATIONS:**



Figure 5 Calculation of Zener Resistance from VI-Characteristics

Dynamic resistance =  $\Delta V_Z / \Delta I_Z$ 

#### **VIVA QUESTIONS:**

- 1. What is Zener diode?
- 2. What are the differences between normal diode and Zener diodes?
- 3. In which region the Zener diode normally operates?
- 4. Name another diode which has a similar region like Zener diode?
- 5. Explain Zener breakdown?
- 6. Draw the VI characteristics of Zener diode?
- 7. What is the significance of Zener diode coding IZ 5.1?
- 8. Name any diode which has different doping levels?
- 9. What are the applications of Zener diode?
- 10. What is Zener diode voltage regulator?
- 11. What is regulation?

## HALF WAVE RECTIFIER WITHOUT FILTER

**<u>AIM</u>**: - To find the ripple factor and percentage regulation of the half wave rectifier at various loads.

## **APPARATUS:**

- 1) Transformer
- 2) Diode BY 127
- 3) DC ammeter- (0-500 mA)
- 4) DC Voltmeter- (0 30) V
- 5) DRB
- 6) AC Voltmeter- (0- 30 ) V

## **CIRCUIT DIAGRAM:**



Figure 1 Circuit diagram of Half-Wave Rectifier without filter

## **PROCEDURE:**

- 1) Make the connections as per the circuit diagram fig.1.
- 2) Tabulate the readings of DC ammeter and DC and AC voltmeters for various values of load resistance.
- 3) Find the no load dc voltage by opening the load and note it as  $V_{No load}$ .
- 4) Also observe the output waveform across R<sub>L</sub> on CRO screen.
- 5) Calculate the ripple factor for all load resistances.
- 6) Calculate the percentage regulation for all values of load resistances.
- 7) Plot the graphs for  $V_{dc}$  Vs  $I_{dc}$ , percentage regulation Vs  $I_{dc}$ , ripple factor Vs  $I_{dc}$ .

## **EXPECTED GRAPHS**:



Figure 2 Plots for  $V_{dc}$  VS  $I_{dc}$ , ripple factor VS  $I_{dc}$ , % ge regulation VS Idc

## **EXPECTED WAVE FORMS:**



Figure 3 Input and output waveforms of Half-Wave Rectifier without filter

## **OBSERVATIONS:**

Open circuited dc voltage  $V_{No load} = ------$ 

| S No | R <sub>L</sub> | I <sub>dc</sub> | $V_{dc}$ | $V_{ac}$ | Ripple factor | % Regulation |
|------|----------------|-----------------|----------|----------|---------------|--------------|
|      |                |                 |          |          |               |              |
|      |                |                 |          |          |               |              |
|      |                |                 |          |          |               |              |
|      |                |                 |          |          |               |              |
|      |                |                 |          |          |               |              |
|      |                |                 |          |          |               |              |
|      |                |                 |          |          |               |              |
|      |                |                 |          |          |               |              |
|      |                |                 |          |          |               |              |
|      |                |                 |          |          |               |              |
|      |                |                 |          |          |               |              |
|      |                |                 |          |          |               |              |

## **CALCULATIONS:**

% regulation = (( $V_{No \ load} - V_{Full \ load}$ )/ V Fullload) x 100

Ripple factor =  $V_{ac}/V_{dc}$ 

## **RESULT:**

## **THEORY:**

## **DISCUSSION:**

## **CONCLUTION:**

## **VIVA OUESTIONS:**

- 1) What is the average current of the half wave rectifier?
- 2) What is the R.M.S. current of the half wave rectifier?
- 3) What is the efficiency of the half wave rectifier?
- 4) What is the ripple factor of the half wave rectifier?
- 5) What is the disadvantage of half wave rectifier?
- 6) What is advantage of full wave rectification operation?
- 7) What is the transformer utility factor?
- 8) What is the main drawback of full wave center tap rectifier?
- 9) What is the remedy for High PIV rating necessity in half wave rectifier with center tapped transformer?
- 10) Why bridge rectifier is preferred compared to full wave rectifier?

## FULL WAVE RECTIFIER WITHOUT FILTER

AIM: - To find the ripple factor and percentage regulation of the full wave rectifier without filter at various loads.

## **APPARATUS:**

- 1) Transformer
- 2) BY 127 diodes --2
- 3) DC ammeter (0-500 mA)
- 4) DC Voltmeter (0 30V)
- 5) DRB
- 6) AC Voltmeter (0- 30 V)

## **CIRCUIT DIAGRAM:**



Figure 1 Circuit diagram of Full-Wave Rectifier without filter

## **PROCEDURE:**

- 1) Make the connections as per the circuit diagram of fig.1.
- 2) Tabulate the volt meter and ammeter readings for various values of load resistance.
- 3) Find the no load dc voltage by opening the load and note it as  $V_{No load}$ .
- 4) Also observe the output waveform across the load resistance on CRO screen.
- 5) Calculate the ripple factor for all load resistances.
- 6) Calculate the percentage regulation for all values of load resistances.
- 7) Plot the graphs for  $V_{dc}$  Vs  $I_{dc}$ , percentage regulation Vs  $I_{dc}$ , ripple factor Vs  $I_{dc}$ .

## **EXPECTED GRAPHS:**



Figure 2 Plots for  $V_{dc}$  VS  $I_{dc}$ , ripple factor VS  $I_{dc}$ , %ge regulation VS Idc

## **EXPECTE WAVE FORMS:**



Figure 3 Input and output waveforms of Full-Wave Rectifier without filter

## **OBSERVATIONS:**

Open circuited dc voltage  $V_{No load} = -----$ 

| S No | R <sub>L</sub> | I <sub>DC</sub> | V <sub>DC</sub> | V <sub>AC</sub> | Ripple factor | % Regulation |
|------|----------------|-----------------|-----------------|-----------------|---------------|--------------|
|      |                |                 |                 |                 |               |              |
|      |                |                 |                 |                 |               |              |
|      |                |                 |                 |                 |               |              |
|      |                |                 |                 |                 |               |              |
|      |                |                 |                 |                 |               |              |
|      |                |                 |                 |                 |               |              |
|      |                |                 |                 |                 |               |              |

## CALCULATIONS:

% regulation = (( $V_{No \ load} - V_{Full \ load}$ )/  $V_{Full \ load}$ ) x 100 Ripple factor =  $V_{ac}$ /  $V_{dc}$ 

## **RESULT:**

**THEORY:** 

**DISCUSSION:** 

**CONCLUTION:** 

## **VIVA OUESTIONS:**

- 1) What is the average current of the full wave rectifier?
- 2) What is the R.M.S. current of the full wave rectifier?
- 3) What is the efficiency of the full wave rectifier?
- 4) What is the ripple factor of the full wave rectifier?
- 5) What is the disadvantage of full wave rectifier?
- 6) What is the transformer utility factor for full wave rectifier?
- 7) What are the applications of rectifiers?
- 8) What is the main drawback of full wave center tap rectifier?
- 9) What is the remedy for High PIV rating necessity in half wave rectifier? with entre tapped transformer?
- 10) Why bridge rectifier is preferred compared to full wave rectifier?

## FULL WAVE RECTIFIER WITH FILTERS

AIM: - To find the ripple factor and percentage regulation of Full-Wave Rectifier with filters at various loads.

## **APPARATUS:**

- 1) Transformer
- 2) Diodes BY127--2
- 3) DC ammeter (0-500 mA)
- 4) DC Voltmeter (0 30V)
- 5) DRB
- 6) AC Voltmeter (0-30 V)
- 7) Inductor 100 mH
- 8) Capacitor 1000µF

## **CIRCUIT DIAGRAM:**

With **Π**- Section Filter:



Figure 1 Circuit diagram of Full-Wave Rectifier with  $\Pi$ - Section Filter



Figure 2 Circuit diagram of Full-Wave Rectifier with L-Section Filter

## **PROCEDURE:**

- 1) Make the connections as per the circuit diagram of fig.1.
- 2) Tabulate the volt meter and ammeter readings for various values of load resistance.
- 3) Find the no load dc voltage by opening the load and note it as  $V_{No load}$ .
- 4) Also observe the output waveform across the load resistance on CRO screen.
- 5) Calculate the ripple factor for all load resistances.
- 6) Calculate the percentage regulation for all values of load resistances.
- 7) Plot the graphs for  $V_{dc}$  Vs  $I_{dc}$ , percentage regulation Vs  $I_{dc}$ , ripple factor Vs  $I_{dc}$ .

## **EXPECTED GRAPHS:**



Figure 3 Plots for  $V_{dc}$  VS  $I_{dc},$  ripple factor VS  $I_{dc}$  ,  $_{\%}ge$  regulation VS Idc

## **OBSERVATIONS:**

| <b>Table 1</b> With $\Pi$ - Section Filter |                |                 |          | Open circuited dc voltage $V_{No load} =$ |               |              |
|--------------------------------------------|----------------|-----------------|----------|-------------------------------------------|---------------|--------------|
| S No                                       | R <sub>L</sub> | I <sub>dc</sub> | $V_{dc}$ | $V_{ac}$                                  | Ripple factor | % Regulation |
|                                            |                |                 |          |                                           |               |              |
|                                            |                |                 |          |                                           |               |              |
|                                            |                |                 |          |                                           |               |              |
|                                            |                |                 |          |                                           |               |              |
|                                            |                |                 |          |                                           |               |              |
|                                            |                |                 |          |                                           |               |              |
|                                            |                |                 |          |                                           |               |              |
|                                            |                |                 |          |                                           |               |              |
|                                            |                |                 |          |                                           |               |              |
|                                            |                |                 |          |                                           |               |              |

| Table 2 L-section filter |                |                 | Open circuited dc voltag $V_{No load} =$ |          |               | $V_{\rm No\ load} =$ |
|--------------------------|----------------|-----------------|------------------------------------------|----------|---------------|----------------------|
| S No                     | R <sub>L</sub> | I <sub>dc</sub> | $V_{dc}$                                 | $V_{ac}$ | Ripple factor | % Regulation         |
|                          |                |                 |                                          |          |               |                      |
|                          |                |                 |                                          |          |               |                      |
|                          |                |                 |                                          |          |               |                      |
|                          |                |                 |                                          |          |               |                      |
|                          |                |                 |                                          |          |               |                      |

Electronic Devices and Circuits Lab

## **CALCULATIONS:**

% regulation =((  $V_{No \ load} - V_{Full \ load}) / V_{Full \ load}$ ) x 100

Ripple factor =  $V_{ac}/V_{ac}$ 

### **RESULT:**

## **THEORY:**

## **DISCUSSION:**

## **CONCLUTION**

## VIVA OUESTIONS:

- 1) What is the average current of the full wave rectifier with filters?
- 2) What is the R.M.S. current of the full wave rectifier with filters?
- 3) What is the efficiency of the full wave rectifier with filters?
- 4) What is the ripple factor of the full wave rectifier with filters?
- 5) What is the disadvantage of full wave center tapped rectifier?
- 6) What is the PIV rating of full wave rectifier?
- 7) What is the purpose of filter in rectifiers?
- 8) What is the reactance offered by the inductance to AC component?
- 9) What is the reactance offered by the capacitance to AC component?
- 10) What is the reactance offered by the inductance to DC component?
- 11) What is the reactance offered by the capacitance to DC component?

## **NON-LINEAR WAVE SHAPING-CLIPPING CIRCUITS**

## AIM:

- 1) To study the operation of different clipping circuits.
- 2) To observe and plot the output wave forms of various clipper circuits for sinusoidal input.

## **APPARATUS REOUIRED:**

- 1) Diodes (IN4007) -- 2 Nos.
- 2) Transistor (BC-107) -- 1 No.
- 3) Resistor-10K $\Omega$  -- 1 No.
- 4) Zener Diodes (IZ 5.1) -- 2 Nos.
- 5) TRPS -- 1 No.
  6) Function generator -- 1 No.
- 7) CRO -- 1 No.
- 8) CRO probes -- 3 Nos.
- 9) Connecting wires. -- As required
- 10) Bread Board -- 1 No.

## **CIRCUIT DIAGRAMS AND EXPECTED WAVEFORMS:**





## PROCEDURE

- 1) Make the Connections as per the circuit diagrams shown in figure.
- Set the Function Generator to produce sinusoidal signal input voltage of 10 V<sub>p-p</sub> and 1KHZ frequency. (For Zener diodes clipper, 20V<sub>p-p</sub>, 1KHZ frequency sinusoidal signal is required).
- 3) Observe the output waveforms on CRO and plot them on the graph sheet.

## **REVIEW OUESTIONS:**

- 1) Define nonlinear wave shaping?
- 2) What is a Clipper Circuit?
- 3) What are the types of Clipper Circuits?
- 4) What is Positive Peak Clipper?
- 5) Draw the Diode Positive Peak Clipper?
- 6) What is Negative Peak Clipper?
- 7) Draw the different Clipper circuits using diodes and their Input/output waveforms?
- 8) Draw the Zener Diode Clipper?
- 9) Draw the output waveform of zener diode clipper in question (8)?
- 10) What is Slicer Circuit?
- 11) Draw the Slicer Circuit and it's output waveform?
- 12) Which circuit will convert sinusoidal input to trapezoidal output? Draw it?

## **NON-LINEAR WAVE SHAPING-CLAMPING CIRCUITS**

## AIM:-

- 1) To study the operation of various clamper circuits.
- 2) To observe and plot the output wave forms of various clamper circuits for sinusoidal input.

## **APPARATUS REOUIRED:-**

- 1) Resistor-100K $\Omega$ -- 1 No.2) Function Generator-- 1 No.3) Diodes-OA76-- 2 Nos
- 4) TRPS -- 1 No.
- 5) CRO -- 1 No.
- 6) CRO probes -- 3 Nos.
- 7) Capacitor-0.1 $\mu$ F -- 1 No.
- 8) Connecting wires -- As required
- 9) Bread Board
- **PROCEDURE** 
  - 1) Make the Connections as per the circuit diagrams shown in figure.
  - 2) Set the Function Generator to produce sinusoidal signal input voltage of 10  $V_{p-p}$  and 1KHZ frequency.
  - 3) Observe the output waveforms on CRO and plot them on the graph sheet.

-- 1no.

## **CIRCUIT DIAGRAMS & EXPECTED WAVEFORMS:-**



(C) Biased Positive Clamper





(d) Biased Negative Clamper

## **REVIEW OUESTIONS:**

- 1) Explain Clamping operation?
- 2) What are the other names of Clamping circuit?
- 3) Classify the Clamper Circuits in detail?
- 4) State Clamping Circuit Theorem?
- 5) Draw the Positive Peak clamper circuit?
- 6) Draw the Negative Peak Clamper Circuit?
- 7) Draw the Clamper circuit to clamp the positive peak at +2 volts?
- 8) Draw the Clamper circuit to clamp the positive peak at -2 volts?
- 9) Draw the Clamper circuit to clamp the negative peak at +2 volts?
- 10) Draw the Clamper circuit to clamp the negative peak at -2 volts?

#### COMMON BASE CONFIGURATION OF BJT

#### AIM:

- 1. To study the input and output characteristics of the transistor in Common base configuration.
- 2. To obtain the h- parameters of the transistor in CB configuration.

#### **APPARATUS:**

- 1. CL 100 s transistor
- 2. Resistor 1K  $\Omega$
- 3. Ammeters [(0 –30 mA)—2]
- 4. Voltmeters [(0 30 V)]
- 5. RPS unit
- 6. Connecting wires

## **CIRCUIT DIAGRAM:**



Figure 1 Circuit diagram for studying input and output characteristics of CB Transistor

## **PROCEDURE:**

## Input characteristics:

- 1. Make the Connections as per the circuit diagram fig.1.
- 2. Keep  $V_{CB}$  constant at 5 V and vary  $V_{EE}$  to tabulate the readings of voltmeter( $V_{BE}$ ) and ammeter( $I_E$ ).
- 3. Repeat the above procedure for  $V_{CB} = 10$  V
- 4. Plot the input characteristics as shown in fig.2 and calculate hparameters h<sub>ib</sub>, h<sub>rb</sub> from the input characteristics.

## **Output characteristics:**

- 1. Vary  $V_{EE}$  to keep the input current I<sub>E</sub> constant at 2 mA.
- 2. By varying  $V_{CC}$ , tabulate the readings of voltmeter( $V_{CB}$ ) and ammeter( $I_C$ )
- 3. Repeat the above procedure for  $I_E = 5$  mA.
- 4. Plot the output characteristics as shown in fig.3 and calculate h-parameters  $h_{fb}$ ,  $h_{ob}$  from output characteristics.

**EXPECTED GRAPHS:** 



#### **OBSERVATIONS:**

 Table 1 Input
 characteristics of CB Transistor

| S No | V <sub>CB</sub>          | = 5V                 | $V_{CB} = 10 V$          |                      |  |
|------|--------------------------|----------------------|--------------------------|----------------------|--|
| 5110 | V <sub>BE</sub> in volts | I <sub>E</sub> in mA | V <sub>BE</sub> in volts | I <sub>E</sub> in mA |  |
|      |                          |                      |                          |                      |  |
|      |                          |                      |                          |                      |  |
|      |                          |                      |                          |                      |  |
|      |                          |                      |                          |                      |  |
|      |                          |                      |                          |                      |  |
|      |                          |                      |                          |                      |  |
|      |                          |                      |                          |                      |  |
|      |                          |                      |                          |                      |  |
|      |                          |                      |                          |                      |  |
|      |                          |                      |                          |                      |  |
|      |                          |                      |                          |                      |  |
|      |                          |                      |                          |                      |  |

## Table 2 Output characteristics of CB Transistor

| S No  | $I_E =$                  | 2 mA                 | $I_E = 5mA$              |                      |  |
|-------|--------------------------|----------------------|--------------------------|----------------------|--|
| 5 110 | V <sub>CB</sub> in volts | I <sub>C</sub> in mA | V <sub>CB</sub> in volts | I <sub>C</sub> in mA |  |
|       |                          |                      |                          |                      |  |
|       |                          |                      |                          |                      |  |
|       |                          |                      |                          |                      |  |
|       |                          |                      |                          |                      |  |
|       |                          |                      |                          |                      |  |
|       |                          |                      |                          |                      |  |
|       |                          |                      |                          |                      |  |
|       |                          |                      |                          |                      |  |
|       |                          |                      |                          |                      |  |
|       |                          |                      |                          |                      |  |
|       |                          |                      |                          |                      |  |
|       |                          |                      |                          |                      |  |
|       |                          |                      |                          |                      |  |
|       |                          |                      |                          |                      |  |

## **CALCULATIONS:**

$$\begin{split} h_{ib} &= \Delta V_{BE} / \Delta I_E \mid \! V_{CB} \text{ constant} \\ h_{rb} &= \Delta V_{BE} / \Delta V_{CB} \mid I_E \text{ constant} \\ h_{fb} &= \Delta I_C / \Delta I_E \mid \! V_{CB} \text{ constant} \\ h_{ob} &= \Delta I_C / \Delta V_{CB} \mid I_E \text{ constant} \end{split}$$

## VIVA OUESTIONS

- 1) What is a transistor?
- 2) Why it is called Bipolar Junction Transistor?
- 3) How many types of transistors (BJTs) are there?
- 4) What are the differences between npn and pnp transistors?
- 5) Why npn transistor is preferred in practical applications over pnp transistor?
- 6) Define  $\Box$  ?
- 7) Define  $\beta$  ?
- 8) What are the three operating regions of BJT?
- 9) In which operating region the BJT acts as an amplifier?
- 10) How to use the BJT as a switch?
- 11) How connect the BJT as a Two-Port network?
- 12) Which configuration of BJT is suitable for voltage amplification?
- 13) What are applications of transistors?
- 14) What are specifications of transistors?
- 15) What is base width modulation?
- 16) What is early effect?

## **COMMON EMITTER CONFIGURATON OF BJT**

## AIM:

- 1) To obtain the input and output characteristics of the transistor in common emitter configuration.
- 2) To obtain the h-parameters from the graphs.

## **APPARATUS:**

- 1) CL 100S transistor
- 2) DC Ammeters [(0-500µA), (0-20mA)]
- 3) DC voltmeters [(0-1V), (0-30V)]
- 4) Resistors [47 KΩ,2.2KΩ]

## **CIRCUIT DIAGRAM:**



Figure 1 Circuit diagram for studying input and output characteristics of CE Transistor

## **PROCEDURE:**

## Input characteristics

- 1) Connect the circuit as per the diagram.
- 2) Keep V<sub>CE</sub> at 5 V.
- 3) Now vary  $V_{BE}$  in steps and tabulate the values of  $I_B$  and  $V_{BE}$ .
- 4) Repeat the above procedure for  $V_{CE} = 10$  V.
- 5) Plot the graph between  $I_B$  and  $V_{BE}$  for various values of  $V_{CE}$ .
- 6) Calculate  $h_{ie}$ ,  $h_{re}$  from input characteristics.

## **Output characteristics**

- 1) By varying  $V_{BB}$  keep  $I_B$  at 100  $\mu$ A.
- 2) Now vary  $V_{CE}$  with the help of  $V_{CC}$  and tabulate the values of  $I_C$  and  $V_{CE}$
- 3) Repeat the above procedure for  $I_B$  at 50  $\mu$ A.
- 4) Plot the graphs between  $I_C$  and  $V_{CE}$ .
- 5) Calculate  $h_{fe}$ ,  $h_{oe}$  from output characteristics.
#### **EXPECTED GRAPHS:**



Figure 2 Input Characteristics

Figure 3 Output Characteristics

#### **OBSERVATIONS:**

Table 1 Input characteristics

| S No | V <sub>CE</sub>          | = 5V                 | V <sub>CE</sub> :        | =10V                 |
|------|--------------------------|----------------------|--------------------------|----------------------|
|      | V <sub>BE</sub> in volts | I <sub>B</sub> in μA | V <sub>BE</sub> in volts | I <sub>B</sub> in μA |
|      |                          |                      |                          |                      |
|      |                          |                      |                          |                      |
|      |                          |                      |                          |                      |
|      |                          |                      |                          |                      |
|      |                          |                      |                          |                      |
|      |                          |                      |                          |                      |
|      |                          |                      |                          |                      |
|      |                          |                      |                          |                      |
|      |                          |                      |                          |                      |
|      |                          |                      |                          |                      |

| S No | $I_{\rm B} = 1$          | 50μΑ                 | $I_{\rm B}=1$            | 00μΑ                 |
|------|--------------------------|----------------------|--------------------------|----------------------|
| 3 NO | V <sub>CE</sub> in volts | I <sub>C</sub> in mA | V <sub>CE</sub> in volts | I <sub>C</sub> in mA |
|      |                          |                      |                          |                      |
|      |                          |                      |                          |                      |
|      |                          |                      |                          |                      |
|      |                          |                      |                          |                      |
|      |                          |                      |                          |                      |
|      |                          |                      |                          |                      |
|      |                          |                      |                          |                      |
|      |                          |                      |                          |                      |
|      |                          |                      |                          |                      |
|      |                          |                      |                          |                      |

#### Table 2 Output characteristics

#### **CALCULATIONS:**

$$\begin{split} h_{ie} &= \Delta V_{BE} / \Delta I_B ~| V_{CE} ~constant \\ h_{re} &= \Delta V_{BE} / \Delta ~V_{CE} ~|~ I_B ~constant \\ h_{fe} &= \Delta I_C / \Delta I_B ~| V_{CE} ~constant \\ h_{oe} &= ~\Delta I_C ~/ \Delta V_{CE} ~|~ I_B ~constant \end{split}$$

**RESULT:** 

#### **THEORY:**

#### **DISCUSSION:**

#### **CONCLUTION:**

#### VIVA OUESTIONS

- 1) What are h-parameters?
- 2) Define  $\alpha$ ?
- 3) Define  $\beta$ ?
- 4) Explain transistor working?5) What are the three regions of operation?
- 6) What are applications of transistors?
- 7) What are specifications of transistors?
- 8) What is base width modulation?

#### **DRAIN AND TRANSFER CHARACTERISTICS OF JFET**

#### AIM:

- 1) To obtain the drain and transfer characteristics of the given FET,
- 2) To calculate drain resistance  $r_d$  and transconductance  $g_m$  of given FET,
- 3) To find the pinch off voltage  $(V_p)$  and drain to source saturation current  $(I_{DSS})$ .

#### **APPARATUS:**

- 1) FET BFW10
- 2) Ammeter (0-20 mA)
- 3) Voltmeter (0-30V)
- 4) Diode OA76
- 5) Regulated Power Supply (RPS)
- 6) Bread board
- 7) Connecting wires
- 8) Multimeter

#### **CIRCUIT DIAGRAM:**



Figure 1 Circuit diagram for studying drain and transfer characteristics of given FET

#### PROCEDURE:

#### **Drain characteristics**

- 1) Make the connections as per then circuit diagram of fig.1.
- 2) Keep the  $V_{GG}$  and  $V_{DD}$  at minimum position before switch on the RPS, i.e.,  $V_{GG} = 0$  and  $V_{DD} = 0V$ .
- 3) Now vary the  $V_{DD}$  and tabulate the values of  $V_{DS}$  and  $I_D$ .
- 4) Repeat step 3 for  $V_{GS} = -2V$  and -4V.
- 5) Plot the graphs for  $V_{DS}$  Vs  $I_D$  for various values of  $V_{GS}$ .
- 6) Calculate r<sub>d</sub> from drain (static) characteristics.
- 7) When  $V_{GS} = 0$  the minimum value of  $V_{DS}$  for which the  $I_D$  is constant becomes the pinch-off voltage( $V_P$ ) and this constant current becomes the drain to source saturation current ( $I_{DSS}$ ). Note down these values for the given FET.

#### **Transfer characteristics**

- 1) Keep the  $V_{DS}$  constant at 5V and  $V_{GS}$  at 0V by varying  $V_{DD}$  and  $V_{GG}$ , respectively.
- 2) Now vary the  $V_{GG}$  and tabulate the values of  $I_D$  and  $V_{GS}$ .
- 3) Repeat the step 2 for  $V_{DS} = 10V$ .
- 4) Plot the graphs for  $V_{DS}$  Vs  $I_D$  for different values of  $V_{GS}$  and  $V_{GS}$  Vs  $I_D$  for different values of  $V_{DS}$ .
- 5) Calculate  $g_m$  from the transfer characteristics.

#### **EXPECTED GRAPHS:**



Figure 2 Drain Characteristics



Figure 3 Transfer Characteristics

#### **OBSERVATIONS:**

Table 1 Drain or Static characteristics

| S No  | V <sub>GS</sub> :        | =0 V      | $V_{GS} =$               | - 2 V     | V <sub>GS</sub> =        | - 4 V     |
|-------|--------------------------|-----------|--------------------------|-----------|--------------------------|-----------|
| 5.110 | V <sub>DS</sub> in Volts | $I_D(mA)$ | V <sub>DS</sub> in Volts | $I_D(mA)$ | V <sub>DS</sub> in Volts | $I_D(mA)$ |
|       |                          |           |                          |           |                          |           |
|       |                          |           |                          |           |                          |           |
|       |                          |           |                          |           |                          |           |
|       |                          |           |                          |           |                          |           |
|       |                          |           |                          |           |                          |           |
|       |                          |           |                          |           |                          |           |
|       |                          |           |                          |           |                          |           |
|       |                          |           |                          |           |                          |           |

#### Table 2 Transfer characteristics

| S No  | $V_{DS}=5V$              |                      | V <sub>DS</sub> =10V     |                      |  |
|-------|--------------------------|----------------------|--------------------------|----------------------|--|
| 5 110 | V <sub>GS</sub> in volts | I <sub>D</sub> in mA | V <sub>GS</sub> in volts | I <sub>D</sub> in mA |  |
|       |                          |                      |                          |                      |  |
|       |                          |                      |                          |                      |  |
|       |                          |                      |                          |                      |  |
|       |                          |                      |                          |                      |  |
|       |                          |                      |                          |                      |  |
|       |                          |                      |                          |                      |  |
|       |                          |                      |                          |                      |  |
|       |                          |                      |                          |                      |  |

#### **CALCULATIONS:**

#### **RESULT:**

Pinch- off voltage (V<sub>P</sub>) = ------ volts Drain to source saturation voltage (I<sub>DSS</sub>) =------ mA Drain resistance (r<sub>d</sub>) =  $\Delta V_{DS}/\Delta I_D$  | at V<sub>GS</sub> constant = ------Ω Transconductance (g<sub>m</sub>) =  $\Delta I_D / \Delta V_{GS}$  | at V<sub>DS</sub> constant = ------mhos Amplification factor  $\mu = r_d \ge g_m$ 

#### **THEORY:**

#### **DISCUSSION:**

#### **CONCLUTION:**

#### **VIVAOUESTIONS:**

- 1) Classify the FET family?
- 2) What is the advantage of FET?
- 3) What are the biasing of FET junctions for active operation?
- 4) What are the disadvantages of FET?
- 5) What is meant by pinch –off voltage?
- 6) What do you understand by the term Drain to source saturation current?
- 7) What is the impedance of the FET at input?
- 8) What is the impedance of the FET at output?
- 9) What are applications of FET?
- 10) What are specifications of FET?

#### APPENDIX

#### **Resistor Identification:**



| Color  | 1 <sup>st</sup> Band | 2 <sup>nd</sup> Band | 3 <sup>rd</sup> Band | Multiplier | Tolerance |
|--------|----------------------|----------------------|----------------------|------------|-----------|
| Black  | 0                    | 0                    | 0                    | x 1 Ω      |           |
| Brown  | 1                    | 1                    | 1                    | x 10 Ω     | +/- 1%    |
| Red    | 2                    | 2                    | 2                    | x 100 Ω    | +/- 2%    |
| Orange | 3                    | 3                    | 3                    | x 1K Ω     |           |
| Yellow | 4                    | 4                    | 4                    | x 10K Ω    |           |
| Green  | 5                    | 5                    | 5                    | x 100K Ω   | +/5%      |
| Blue   | 6                    | 6                    | 6                    | x 1M Ω     | +/25%     |
| Violet | 7                    | 7                    | 7                    | x 10M Ω    | +/1%      |
| Grey   | 8                    | 8                    | 8                    |            | +/05%     |
| White  | 9                    | 9                    | 9                    |            |           |
| Gold   |                      |                      |                      | x .1 Ω     | +/- 5%    |
| Silver |                      |                      |                      | x .01 Ω    | +/- 10%   |



| <sup>st</sup> Digit | 2 <sup>nd</sup> Digit | 3 <sup>rd</sup> Digit (rare) | Multiplier | (10 with 4 zeros) |
|---------------------|-----------------------|------------------------------|------------|-------------------|
| 1                   | 0                     |                              | 4          | = 100k Ω          |

**Surface-Mount Resistors** 

#### **INDUCTOR:-**





#### Capacitors:



Modern capacitors, by a cm rule. Standard Switches:

| Type of Switch                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Circuit Symbol | Example                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------|
| <b>ON-OFF</b><br><b>Single Pole, Single Throw = SPST</b><br>A simple on-off switch. This type can be used to<br>switch the power supply to a circuit.<br>When used with mains electricity this type of switch<br><i>must</i> be in the live wire, but it is better to use a DPST<br>switch to isolate both live and neutral.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                | SPST toggle switch                                                                                    |
| (ON)-OFF<br><b>Push-to-make = SPST Momentary</b><br>A push-to-make switch returns to its normally open<br>(off) position when you release the button, this is<br>shown by the brackets around ON. This is the<br>standard doorbell switch.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                | Push-to-make switch                                                                                   |
| <b>ON-(OFF)</b><br><b>Push-to-break = SPST Momentary</b><br>A push-to-break switch returns to its normally closed<br>(on) position when you release the button.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <u> </u>       | Push-to-break switch                                                                                  |
| ON-ON<br>Single Pole, Double Throw<br>= SPDT<br>This switch can be on in both positions, switching on<br>a separate device in each case. It is often called a<br>changeover switch. For example, a SPDT switch can<br>be used to switch on a red lamp in one position and a<br>green lamp in the other position.<br>A SPDT toggle switch may be used as a simple on-<br>off switch by connecting to COM and one of the A or<br>B terminals shown in the diagram. A and B are<br>interchangeable so switches are usually not labelled.<br>ON-OFF-ON<br>SPDT Centre Off<br>A special version of the standard SPDT switch. It has<br>a third switching position in the centre which is off.<br>Momentary (ON)-OFF-(ON) versions are also<br>available where the switch returns to the central off<br>position when released. |                | SPDT toggle switch<br>SPDT toggle switch<br>SPDT slide switch<br>(PCB mounting)<br>SPDT rocker switch |

#### Dual

#### **Double Pole, Single Throw = DPST**

A pair of on-off switches which operate together (shown by the dotted line in the circuit symbol). A DPST switch is often used to switch mains electricity because it can isolate both the live and neutral connections.

#### Dual

#### **Double Pole, Double Throw = DPDT**

A pair of on-on switches which operate together (shown by the dotted line in the circuit symbol). A DPDT switch can be wired up as a **reversing** switch for a motor as shown in the diagram. **ON-OFF-ON** 

#### DPDT

Centre

A special version of the standard SPDT switch. It has a third switching position in the centre which is off. This can be very useful for motor control because you have forward, off and reverse positions. Momentary (ON)-OFF-(ON) versions are also available where the switch returns to the central off position when released.

**Special Switches:** 



## **Type of Switch** Example **Push-Push Switch** (e.g. SPST = ON-OFF) This looks like a momentary action push switch but it is a standard on-off switch: push once to switch on, push again to switch off. This is called a latching action. **Microswitch** (usually SPDT = ON-ON) Microswitches are designed to switch fully open or closed in response to small movements. They are available with levers and rollers attached. Keyswitch A key operated switch. The example shown is SPST.

## **ON-OFF**

То



Breadboard:





#### **DIODES:**



#### **Power Transistors:**







### RGM COLLEGE OF ENGINEERING AND TECHNOLOGY AUTONOMOUS (ESTD. 1995)

Accredited by NAAC of UGC, New Delhi with 'A' Grade Nandyal - 518 501. Kurnool (Dist.) A.P.

## LABORATORY CERTIFICATE

This is certify that Mr. / Miss. M. Fayhana. Begum. Regd. No. 2109/A0442. of T-1 year. B. Tech. has successfully Electronic Devices completed the experiments in and circuits. Iab of the ECE Branch prescribed by the RGMCET Jutonomous), Nandyal. for the academic year. 2022.

Signature of the Staff Member

Date 9/03/2023

Signature of the Internal Examiner

the External Examiner Signature

# RGM COLLEGE OF ENGINEERING AND TECHNOLOGY (AUTONOMOUS) (ESTD-1995)



Accredited by NAAC of UGC, New Delhi with 'A' Grade Nandyal - 518 501. Kurnool (Dist.) A.P.

÷.,

## INDEX

| SI.<br>No. | Date     | Name of the Experiment                                                          | Page No.       | Marks | Remarks |
|------------|----------|---------------------------------------------------------------------------------|----------------|-------|---------|
| 1.         | 20/10/22 | V-I characteristics of<br>PN-Junction Diode                                     | 1-4            | 95    | N       |
| 2-         | 27/10/22 | VI-and Load characteristics<br>Of Zener Diode                                   | 5-7            | gb-   | N       |
| 3-         | 2/10/22  | Halfwave Rectifier without<br>Filter                                            | 8-12           | 92    | M       |
| u٠         | 2/10/22  | Full wave Rectifier without<br>Filters                                          | 13-17          | gr-   | PL .    |
| 5.         | 9/11/22  | FUIL wave Rectifier with                                                        | 18-20          | 9     | 4P      |
| 6.         | 15/12/22 | Filters.<br>Non-linear wave sharing<br>- clipping circuits                      | 21-23          | gr    | the     |
| ٦·         | 22/12/22 | Non-linear wave shaping                                                         | 24-25          | qh    | the     |
| 8.         | 12/1/23  | Common Base Configuration<br>Of BJT (Input & output<br>Characteristics)         | 26-29          | 2     | H       |
| 9.         | 19/1/23  | Common Emitter<br>Configuration of BJT<br>CInput and output<br>(homosferistics) | 30-33          | 92    | H       |
| 10.        | 2/2/23   | Drain and Transfer<br>Characteristics of JFET                                   | 34- <i>3</i> 7 | gz    | 4       |
|            |          |                                                                                 | /              | Oly   | M       |

| C I                                     |                                                       |                  |  |  |  |
|-----------------------------------------|-------------------------------------------------------|------------------|--|--|--|
| EXPT. NO:                               | VI- CHARACTERISTICS OF                                | Date:            |  |  |  |
| T                                       | PN JUNCTION DIODE                                     | 20/10/22         |  |  |  |
| Aim                                     | . 1) To establish the electrical equin                | De levot model   |  |  |  |
| ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | of the airen device by abtaining                      | a the            |  |  |  |
|                                         | Compared and versere charactericities                 | ig the           |  |  |  |
|                                         | forward and regise undracteristic                     | -5 Of the Piv-   |  |  |  |
|                                         | 2) TO find the type of material                       | used for         |  |  |  |
|                                         | manufacturing the dide.                               | R PS F           |  |  |  |
| Na pizzero                              | a 32 obtain the static and dynam                      | ic resistances   |  |  |  |
|                                         | of the diode from the characteristi                   | ics-             |  |  |  |
| Approvature.                            | who of the Director BY127 Director DP2                | 5 Develo         |  |  |  |
|                                         | TNUMA Diade , Dr147 101000, DR2                       | 5 15100E         |  |  |  |
|                                         | 2) Immaters (0-10mA), (0-500                          | ALA)             |  |  |  |
|                                         | 2) fullimeter (0-1V)                                  |                  |  |  |  |
| •                                       | 4) Regulated power supply                             |                  |  |  |  |
|                                         | 5) Pesistar -1kn and                                  |                  |  |  |  |
| . Con                                   | 6) connecting wires.                                  |                  |  |  |  |
| Theory                                  | A PN Tunction is formed by                            | diffusion        |  |  |  |
| , no. j                                 | P-type material to one half                           | cide and         |  |  |  |
|                                         | N-type other half side. The plan                      | nel Tunction     |  |  |  |
| 6 - Sec. 17.                            | dividing the two zones is known                       | as a             |  |  |  |
|                                         | functions. when voltage is not app                    | olied across     |  |  |  |
|                                         | the diode depletion region forms                      | as known         |  |  |  |
|                                         | in the figure when voltage is, a                      | pplied           |  |  |  |
| . ver pris                              | Between the two terminals of t                        | he divde         |  |  |  |
|                                         | on polarity of DC Supply.                             | , acta mild      |  |  |  |
| R. G. M. C                              | College of Engineering and Technology (Autonomous), N | andyal - 518 501 |  |  |  |
| X (BERE-TONE)                           | ESTD : 1995                                           |                  |  |  |  |

Circuit Diagrams: - 219 100 110 - IV ION 1947 20 10 22 FIN JUNCTION MAGE 1 K.J. JN4007 (0-100 mA)Arren SPOTES diven device by obtaining th NOT OF THE RICE OF THE PN fore protero? Vpp Linterre to applied them) or (s RPS monufacturing the diade. (0-30V) in what of the diade from the characteristics. Figura 1 Measurementer of Waltageriand current in Forward Biasing. aboid FOOHMI (HINDOG D) (CAMOLO) and Jammif (s 3) volumeter (0-14) W Regulated power supply 100-1 IN 4007 - 28 (0-0.1mA) Icias pot prieukib va b prosil [ JUNCED AS FORDE 145 Lype material to one half state - 9 other half side The plangvit 307101-RPS / invitation the two works is known as a (0-30V) How and a small 1 noi Hom. - Joims as Emacon Glaph state deple Figure 2: Measurement of voltage & current in contrado de la contradición Bidsingo deparations

| 2                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Forward Bias: when the positive terminal of<br>the entire external battery is connected to<br>the P-region and negative terminal is connected<br>to N-region. Then it is called Forward Bias. |
| Reverse Bias: - when the negative terminal of<br>the battery is connected to positive terminal<br>is connected to N-region This is called as<br>Reverse Bias.                                 |
| Procedure: 1) connect the circuit as per the circuit diagram                                                                                                                                  |
| 2) set the RPS to minimum position and switch<br>on                                                                                                                                           |
| 3) By slowly varying the RPS Observe and<br>tabulate the values of Voltmeter & ammeter-                                                                                                       |
| W Take the voltmeter reading at which the<br>current storts raising as cut-in-voltage.<br>5) plot the graph between Vf & If.                                                                  |
| 6) From the graph calculate static and                                                                                                                                                        |
| dynamic resistancesite states to another<br>7) Repeat the same procedure for another                                                                                                          |
| 8) find the type of diode depending upon                                                                                                                                                      |
| the cut in voltage.                                                                                                                                                                           |
| 9) For reversebias characteristics whiteet                                                                                                                                                    |
| the circuit and provide and a                                                                                                                                                                 |

R. G. M. College of Engineering and Technology (Autonomous), Nandyal - 518 501 ESTD : 1995

Expected Graphs -- of and many soit browned the P-region and negative terminal is connected to N-region, then it is dated Formound Bias gotionate scribband when the negative terminal of the balles is Balled as 11 1 is connected Revierse Bias VF (Voits) rect the Einsuit as preiphe cincuit diagram Figure : 3 :- V-I characteristics of Gez Sidiodes in forward Notinge Reverse voltage Breakdown (18) 108 (3) VRCKOITS) BUT BUT DO ALE DOILINGE PUWOLZ POR (8) tabulate the values of Voltmeter & ammeterw rate the volumeter reading de which the criment storts raising as cut-in-poltage. 5) Plot the graph betaden VI & IR the start the graph calculate starts and Figure 4: V-I characteristics of George TRE LIASER raditioned 1994 In Beverse Blas will add inagos (F sport a) find the by of diade at thing upon the cut in voltage Burlect a) for veversebas the circuit as WALL ragan 0 calculation of static & pynamic Resistances.

3

static resistance =  $\frac{VF}{I_{\pm}} = \frac{H}{R}$  (from fig-5) Dynamic resistance =  $\Delta V_F = C - E$  (from fig-5)  $\Delta I_F = D - F$ spatiar share in the SI CONCINE Arres of a C ۲ Reverse Saturation Crivient IO = IF (V/NVT) 0 - 6 where VT= 26mV - voit equivalent temperature n=1 for Ge & n=2-for si calculations: Static resistance for si diode = VF = 0.60 IF 2-5×10-3 =234.37-2 25 9 31 for  $Ge = \frac{VF}{IF} = \frac{0.30}{4 \times 10^3} = 75.2$ 01 220 9240 Dynamic resistance for si 258 2 F 2 O  $\frac{\Delta V}{\Delta I} = \frac{0.72 \pm 0.60}{13 \times 10^3 - 2^{\circ} 5 \times 10^3} = 11.0$ 34.2 = 11.42.2 14 3O  $for Ge = \Delta V = 0.35 - 0.30$  $\Delta I = 0.35 - 0.30$  $= 11 \cdot 11 - 2$ 8-5×103- 4×103 Reverse saturation current IO= IF (V/MVT-1)  $for Si = 2.5 \times 10^3$ = 24. 36 × 109 (nA) 0.60 2×26×103-1) 24.36 NA ux103 for Ge = = 0.03899 MA 0.30 126×103 1 R. G. M. College of Engineering and Technology (Autonomous), Nandyal - 518 501 B

observations:

## Table 1: Forward characteristics

|      |                                 | ETC                            |                                 |                        |
|------|---------------------------------|--------------------------------|---------------------------------|------------------------|
| G.NO | Si diode Voltage<br>VF in Volts | si current<br>If in ma         | Ge diode voltage<br>VF in voits | Si corrent<br>It in ma |
| 1    | 0.115                           | 0.0                            | O'I DIALITY                     | 0                      |
| 2    | 0=2-11-2                        | 0                              | 0.2                             | 1.0                    |
| 3    | 0.3                             | 0                              | 0.2                             | 1.5                    |
| ч    | 0.4                             | unha Acu <mark>P</mark> erletu | 0.25 213/14                     | 2.5                    |
| 5    | 0.5                             | 3-2-40x So                     | 13 300 30% 1= DP                | 4.0                    |
| 6    | 020055 1V                       | dia O .                        | 0.3                             | 6.5                    |
| 78   | BIXPO.6 TT                      | 2.5                            | 019 0.35 JUND 19                | 2016815100000          |
| 8    | 0.61                            | 50                             | 0,35                            | 11.0                   |
| 9    | 0.62                            | 5.4                            | 0.4                             | 14.0                   |
| 10   | 0.65                            | 275.508.0 =                    | 10,420 701-                     | 18.0                   |
| 11   | 0.72                            | 13.6 81410                     | 0.44                            | 22.0                   |
| 12   | 0.75                            | ZUG DONAL                      | DUI VONNO 105                   | 258                    |
| 13   | 0.75                            | 02.24                          | VA 0.44                         | 2702                   |
| 14   | 0.75                            | 30                             | 16 0.5                          | 30                     |
|      | A                               |                                |                                 |                        |

Table 2: Reverse characteristics

|     | S'NQ | Diode Volt     | age    | Diode cur | rent<br>Anorsch |
|-----|------|----------------|--------|-----------|-----------------|
| 6   | Arre | 5              |        | 2         | ş.(-            |
| Ć.  | 2    | 10             |        | 2         | 2               |
| (an | P3 , | 二 2 朝 36       | 0      | XZ-2      | ाट गणी-         |
|     | 4    | 28 20          | 11.5   | 25×22     |                 |
|     | 5    | 25             | 1      | 2         |                 |
| AU  | 068  | 80 y <b>80</b> | Ö      | XN 2= 3   | To tot          |
|     |      |                | (1_10) | 80 241 g) |                 |





|            | Ч                                                                                                                                                                                                                                                                                                                                                              |
|------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Result     | Cut in Voltage of Ge diode = 0.26v<br>cut in Voltage of si diode = 0.60v<br>static Resistance of Ge diode = 75.2<br>static Resistance of Si diode = 234.37.2<br>Dynamic Resistance of Ge diode = 11.11.2<br>Dynamic Resistance of Si diode = 11.42.2<br>Reverse Saturation current of Ge diode = 24.36 ne<br>Reverse Saturation current of Si diode = 0.0389.2 |
| conclusion | Hence, established the electrical equivalent<br>model of the given device by obtaining<br>the forward & reverse characteristics of<br>PN Junction diode and also determined the<br>static & dynamic resistances of diode from<br>the characteristics by Si & Ge type of<br>material used for manufacturing the<br>diode.                                       |
|            |                                                                                                                                                                                                                                                                                                                                                                |

10410-100

| EXPT NOIS VI AND LOAD CHARACTERISTICS Date:<br>2 OF ZENER DIODE 27/10/22<br>Aim J TO study the VI characteristics of given<br>Zener Diode |
|-------------------------------------------------------------------------------------------------------------------------------------------|
| 2 OF ZENER DIODE 27/10/22<br>Aim J To study the VI characteristics of given<br>Zener Diode                                                |
| Aim 1) To study the VI characteristics of given                                                                                           |
| Fener Diode                                                                                                                               |
| 7 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2                                                                                                   |
| 2) To study the load characteristics of giver                                                                                             |
| Zener Diode                                                                                                                               |
| 3) TO calculate the tener resistarice of the                                                                                              |
| Apparatus: 11 T7 5. 1 zener diode                                                                                                         |
| 2) Ammeters Co-30mA)-2                                                                                                                    |
| 3) voltmeter (0-10V)                                                                                                                      |
| (vol-o) sv M) Regulated power Supply (RB)                                                                                                 |
| 5) Resistor - Knoce Per and connecting wires                                                                                              |
| 6) Decade resistance box and connecting with                                                                                              |
| Theory : tener diodes are normally used in only                                                                                           |
| reverse biars direction it means that anode                                                                                               |
| voltage sources and the cathode must be                                                                                                   |
| connected to positive side it is primarily                                                                                                |
| used to regulator circuit Voltage as it has a                                                                                             |
| constant Vn.                                                                                                                              |
| In forward bias, the zener diode behaves                                                                                                  |
| like an ordinary sincorraioue.                                                                                                            |
| In Reverse Blas, there is placed outing hip                                                                                               |
| voltage his reached when this occurs                                                                                                      |
| R. G. M. College of Engineering and Technology (Autonomous), Nandyal - 518 501                                                            |



alcolation of 2000 - Resistance from V.T. Americalistics

|      | there is a sharp increase in reverse               |
|------|----------------------------------------------------|
|      | shord current?                                     |
|      | when réverse-biased voltage is applied             |
|      | to a zener diode, it allows only a small           |
|      | amount of reakage current until the                |
| ~    | voltage is ress than zener voltage.                |
| 1 tr | - A A - ORIGINA INGION SIVE VIEW                   |
|      | stoceulure zener characteristics:                  |
|      | 1) Make the connections as per the circuit         |
|      | diagramores (2002) st appointer one                |
|      | 2) By slowing increasing the imput voltage         |
|      | tabulate the readings of voltmeter and             |
|      | ammeter.                                           |
|      | 3) Plot the graph between Iz and Vz                |
|      | CVT - chowcocteristics)                            |
|      | which the current storts                           |
|      | 9 The vorage at control the control volto as       |
|      | increasing is called the break down voltage.       |
| (*   | 5) From the Breakdown region calculate             |
| )    | the zener resistance of the zener diock.           |
|      | Load characteristics: 21 008                       |
|      | 72 FC 2-53 Bit the civit                           |
|      | UMake the connections as per the chicard           |
| 1.1  | diagram and                                        |
|      | 2. 11 2) setting RPS value to 300 Vary the load in |
|      | steps and tabulate the readings of total           |
|      | current, load current and zener voltage.           |
|      |                                                    |

R. G. M. College of Engineering and Technology (Autonomous), Nandyal - 518 501 ESTD : 1995

| calculation of zener - Resistance from V-I characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| beinge<br>Vz<br>beinge<br>Vz<br>beinge<br>Vz<br>beinge<br>Vz<br>beinge<br>Vz<br>beinge<br>Vz<br>beinge<br>Vz<br>beinge<br>Vz<br>beinge<br>Vz<br>beinge<br>Vz<br>beinge<br>Vz<br>beinge<br>Vz<br>beinge<br>Vz<br>beinge<br>vz<br>beinge<br>to the<br>vz<br>beinge<br>to the<br>vz<br>to to to to to<br>to to to<br>to to<br>to to<br>to to<br>to to<br>to to<br>to to<br>to to<br>to to<br>to to<br>to<br>to<br>to<br>to<br>to<br>to<br>to<br>to<br>to |  |  |  |  |
| TIDDIEL OF VEL CHURCHEN OF STONE (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| SNO Zener voltage vz (volts) zener content = 2(1111)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| by slowing merecising the importance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 3 DAD OB MATING TO SPRIDDE OF STALLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |
| 4 1.6 O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |
| 5 2-2 4 1.1.3 1 1.1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 6 Eligitario El manufad adrigitario 13 Pietro 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |
| T TO (2017 in ite And                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 8 78 170                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| WITHOUNDED OF CONTRACT IN SOFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 10 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| Table 2: Zener diode load characteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |
| Envol Pring Of Southes Tringen 1 Dridma   Tr D - Tringen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |
| 1  SNO  Retries  318  Jourse Give  27  July 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 200 50 24 24 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |
| 3 300 78 322 300 22 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 1 400 18 22-5 177 5-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| P-5 UMALESTAD CORTESTIONS OF THE CITEMENT 9-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
| 5 500 180 27-5 11 11-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |
| 6 300 7.8 22-5 9 13.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |
| 1 1 100 and 112 voc a selouresta pre-ba (2 14.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| 8 800 CHIMPENI SHULDING TOTAL INFORMAN IS-5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
| 10 1000 PORTS DOLD IN 144 Phodic Tristing 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |





6

10.10.10

| EXPT. NO:                | HALF WAVE RECTIFIER                                                                                                                                                                                                                                                               | Date:                                              |  |  |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|--|--|
| 03                       | WITHOUT FILTER                                                                                                                                                                                                                                                                    | 2/10/22                                            |  |  |
| Aim                      | To find the ripple factor and percer<br>regulation of the half wave rectifier.                                                                                                                                                                                                    | itage<br>at                                        |  |  |
| Apparatus                | Various loads.<br>J Transformer<br>2) Diode BY 127                                                                                                                                                                                                                                |                                                    |  |  |
| t T<br>W D shr(<br>ot-m) | <ul> <li>3) DC ammeter - (0-500 mÅ)</li> <li>(u) DC Voltmeter - (0-30) V</li> <li>5) DRB</li> <li>6) AC voltmeter - (0-30) V</li> </ul>                                                                                                                                           | )/ • 4                                             |  |  |
| retery:                  | The half wave rectifier converts the<br>DC. But the obtained DC at the out<br>not a pure DC. It is a pulsating Dir                                                                                                                                                                | e Ac into<br>put is<br>cet current                 |  |  |
|                          | The pulsating Direct current is not<br>constant. It fluctuates with respect<br>when this fluctuating DC is applied to<br>electric device the device may not a<br>Proper ly. Sometimes the device may<br>be damaged. So the fluctuating DC is<br>useful in most of the appliances. | a<br>to time.<br>to any<br>work<br>y also<br>s not |  |  |
|                          | Therefore, we need a DC that does<br>fluctuate with respect to time. The or                                                                                                                                                                                                       | nly                                                |  |  |
| R. G. N                  | R. G. M. College of Engineering and Technology (Autonomous), Nandyal - 518 501                                                                                                                                                                                                    |                                                    |  |  |

ł ļ

8



R. G. M. Coil-go of Emiliaeeding and Technology (Judonomous), Mandyst - 618 601

| And the second sec |                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Idention<br>Idention                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | solution for this is smoothing the<br>fluctuating Dc. This can be achieved by<br>using a filter called Filter.<br>The pulsating Dc contains both Acand Dc<br>components to components are useful but Ac<br>components are not useful. So, we need to<br>reduce the Ac components. By using the filter,<br>we can reduce the Ac components at the<br>output.                                                                                  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | The filter is an electronic device that allows<br>dc components & blocks the ac components<br>of the rectifier output. The filter is made up<br>of a combination of components such as<br>capacitors, resistors & inductors. The capacitor<br>allows ac & blocks the dc. The Inductor<br>allows dc & blocks the dc. The Inductor<br>allows dc & blocks the ac.<br>The passage of ac components through the<br>is bothing but charging of the |  |  |  |
| Corro J 4<br>phono - H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Capacitor is normal words, the ac component<br>capacitor. In simple words, the ac component<br>is nothing but an excess current that flows<br>through the capacitor & charges it. This<br>through the capacitor & charges it. This<br>Prevents any sudden change in the voltage<br>at the output.                                                                                                                                            |  |  |  |
| Procedure :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | diagram as fig-1                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |
| -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2) Tabulace vite ratering of various values of                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| R. G. M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | R. G. M. College of Engineering and Technology (Autonomous), Nandyal - 518 501                                                                                                                                                                                                                                                                                                                                                               |  |  |  |
| (1010-1005)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ESTD : 1995                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |

Expected Graphsonne et eint rot noituloz Po Vac 1 rising a filter cullipagin ----CV3 The pulsating De contains both he and De contrainentes as companyettes are used ut that Ac inportante are not usedul. So, we need to reducestic Ac componetamostil using the filter, IdcomA) we could meduce the AC components at the Figure 2: - Plot for Vac VS Idc, Ripple factor Vs Idc, The filter is an electronic device that allow 2303 mogros Joage Regulation Vs Ide mos ob respected waveforms: fugino rolling and to of a combination of components stances capacitors restators & inductors. The Mapacitor allows ac & blocks the gr. The Inductor Mill Panold / This passage of of formponents through the carteritor is hough the Carteritor is howing wards ind a 430% mponent carteritor in simple wards ind a 430% mponent and an exce through the capacitor & charges it This tcms Figure 3: - Inplie & Surpuits wave forms of Half-wave Rectifier without Filter salt to Procedure : 3) Make the connections as per the circuit diagram as fig-1 2) Tabulate the readings of DC annihiter and DO E AC VOLINGERS FOR VANIOUS VALUES OF

foad resistance. Susavations. 3) Find the no load de voltage by opening the road and note it as VNO road. time in and 4) Also observe the output waveform across RL / Regulation on crosscreen. SNY SHE 5) calculate the ripple factor for all load resistance 23-113 6) calculate the percentage regulation for all 1118 values of load resistances. 8-81 7) Plot the graphs for Vac Vs Idc, percentage 6.2.5 regulation of VS Idc, ripple factor Vs Idc. 6-25 calculations: :/ regulation = (CVNO Load - VFUII Load) 2100 5.1 (VFUII Load) 6-25 Ripple factor = Vac Vac 006 12 6.25 0 000 25-2  $1 \cdot Vac = 7 \cdot u1 = 1 \cdot 2$ Vdc 2. 8.65 = 1.2 3. 9.20 = 1.2 9.5 = 1.18 × 1.2 4. 8.0 5.  $\frac{9.7}{8.0} = 1.2$  $6. \frac{9.8}{2.2} = 1.2$ R. G. M. College of Engineering and Technology (Autonomous), Nandyal - 518 501 6

16

ESTD : 1995
| 1055     | roaveform ac       | output             | ve the                         | 1.150 Obsei                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | (p                     | -            |
|----------|--------------------|--------------------|--------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|--------------|
| SINO     | RL                 | Idc                | Vac .                          | Vacos                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | factor_                | 1- Regulatio |
| Jest 240 | bog the role T     | 01627-2            | ggi6 and                       | - S.Froful- 215                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1 1=2                  | 41.66        |
| 210      | rolulations for    | agista             | he perce                       | 1 38.61510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 132                    | 21.4         |
| 3        | 300                | 5-1 <b>3</b> 45(cc | 83 <b>7.</b> \$000             | 1.9.2090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 101-2                  | 13.3         |
| reletige | Vs Idoopric        | orio lar           | 810701                         | 1 29:5100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1:2                    | 6-25         |
| 5. 16    | le factorio d'is a | 1916               | histor .                       | 109.71101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1:2                    | 6-25         |
| 6        | 600                | 14                 | 8-0                            | 9-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1-2                    | 6.25         |
| 7        | VENILOOD)          | -theos             | M&-2) = (                      | regulation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1-2-810                | 6-25         |
| 8        | 800                | town               | 80                             | 9-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1.2                    | 6-25         |
| 9        | 900                | 10                 | 6.0                            | 9.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1-2                    | 6.25         |
| 10       | 1000               | 10                 | 000                            | 10-0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.2                    | 6-25         |
|          |                    |                    | 201 202<br>202<br>201 202<br>2 | $\frac{100}{100} = \frac{100}{100} = $ | 1. V<br>2.<br>3.<br>5. |              |

- ----

1.

-• -•

$$\begin{array}{l} 7. \ 9.9/10 = 1.2 \\ 8.9.9/10 = 1.2 \\ 9.9.9/10 = 1.2 \\ 9.9.9/10 = 1.2 \\ 10 \ 8.0/10.0 = 1.2 \\ \hline 10 \ 8.0 - 6 \\ \hline 10 \ 8.0 \\ \hline$$

.

Ó

ESTD : 1995

1)



| EXPT NO:  | FULL WAVE RECTIFIER                                                                                                                                                                                                             | Date:                                                                   |
|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| 04        | WITHOUT FILTER                                                                                                                                                                                                                  | 2/10/22                                                                 |
| Aim       | To find the ripple factor and percenter regulation of the full wave rectifient filter at various loads.                                                                                                                         | centage<br>* without                                                    |
| Apparatus | 1) Transformer<br>2) BY 127 diodes-2<br>3) DC ammeter (G-500MA)<br>4) DC voltmeter (G-30V)<br>5) DRB<br>6) AC voltmeter (G-30V)                                                                                                 |                                                                         |
| Theory    | Full wave Rectifier is a diode circle<br>is used to transform the complet<br>of Alternating voltage (Ac supply)<br>Voltage CDC supply). In full wave re<br>current flows through the load<br>same direction for the complete cu | uit which<br>te cycle<br>to Direct<br>ctlfication,<br>in the<br>ycle Of |
| Rentflier | A rectifier (without filter) with<br>ripple frequency equal to twice<br>frequency, has ripple factor of a<br>power conversion efficiency equa                                                                                   | fundomental<br>the mains<br>0.482 &<br>al to 81.27.                     |
| R. C      | 6. M. College of Engineering and Technology (Autonomous), Na<br>ESTD : 1995                                                                                                                                                     | ndyal - 518 501                                                         |

13



<sup>141.912.</sup> 

The full -wave rectifier consists of a center-tap transformer, which results in equal voltages above and below the centertap. During the positive half cycles a Positive voltage appears at the anode of D1 while a negative voltage appears of the node of D2. Due to this diade D1 is forward biased it results in a current Id1 through the load R.

> During the negative half cycle, a positive voltage appears at the node of D2 and hence it is forward brased. Resulting in a current Id2 through the load at the same instant a negative voltage appears at the anode of D1 thus reverse bigsing it and hence it doesn't conduct.

Procedure: 1) Make the connections as per the circuit diagram of fig.1.

2) Tabulate the voltmeter and ammeter readings for various values of load resistant 3) Find the no load de voltage by opening the load and note it as VNOLOAd.

4) Also, observe the output waveform

R. G. M. College of Engineering and Technology (Autonomous), Nandyal - 518 501 ESTD : 1995

Expected graphs rate to voice Jul oil Naccipilluser Abida of prographic tradetation gruss voitages above and below thecenterip. muing the positive hold tycles de situte voltage appears at the anode of Dy while a pregotive voltays appears of the Ide Projuteroz- at compatibility of successformand to share cmA) and prove for Vach Vs Ido imploid for HPIRLE gattor, a plat for 7. Regulation VS Jdc . A books Ide During the negative halfsmind share formed it is forward Grased. Resulting in a current Ida through the load at the same (Historit a egentive / soltage appears / at the avoid of Di and minice it doesn Pater (the Criterit C.F. recedua (emotion 2) Tabalate, the vollmeter and ammieter structures is the so the south of waveforms of Fullprimaço yo ave Rectifica without filter. the load and mote it as vuoload. 4) Also observe the output waveform.

across the load resistance on CRD serven.  
5) calculate the nipple factor for all load  
resistances.  
6) calculate the percentage segulation for  
all values of load resistances.  
7) Plot the graphs Vdc Vs Idc, percentage  
regulation Vs Idc, supple factor Vs Idc.  
Calculations: 7. Regulation = 
$$\begin{pmatrix} VN0Load - VFUII Load \\ VfuII load \end{pmatrix}$$
 %100  
Ripple factor = Vac  
Vdc  
1) Vac =  $\frac{3.6}{7.0} = 0.5$   
2)  $\frac{U:0}{8:0} = 0.5$   
3)  $\frac{U:0}{8:0} = 0.5$   
()  $\frac{U:1}{8:0} =$ 

ESTD: 1995

observations:

bool illo roj notor siggin and stallado (2

|      |              | L         | L Street                |                   |                  |                 |
|------|--------------|-----------|-------------------------|-------------------|------------------|-----------------|
| SNO  | DIPENDAN     | apotron   | NDC JI                  | VACION            | Ripple<br>factor | *<br>Regulation |
| 4    | 100          | 100000    | 6020Ko a                | 316V M            | 0.5              | 21.4            |
| 3933 | 1200 co      | 6138K 36V | ade Bip                 | 14.0019           | 0.5              | 6-25            |
| 3    | 2 v 300 toot | Sogina .  | Ve O'Bele               | 14:81up           | .0.5             | 6.25            |
| 4    | 400          | 20        | 80                      | u.0               | 0.5.             | 6.25.           |
| 5    | - 5000111    | 16 - brod | 0.8.0                   | Ne l'andre        | 0.5              | 6-25            |
| 6    | 600          | 14 Mult   | , 8.0                   | 4.)               | 0.5              | 6.25            |
| 7    | 100          | 12        | 8.0                     | 4.1               | 0.5              | 6.25            |
| 8    | 800          | 10        | 58-0 = 101              | यन्त्रीवविष्ठि    | 0.5              | 6.25            |
| 9    | 900          | 16        | \$~0                    | U.1               | 05               | 6.25 -          |
|      |              | ,         | 3.6<br>7.0 = 0.5<br>0.5 | Vac               | 2                |                 |
|      |              |           | 2 · 5<br>7-5            | 0-10 (A           | 3                |                 |
|      |              |           | 2.0                     | 6-8<br>6-8<br>6-8 | 2                |                 |
|      |              |           | 200                     | 1413 73           | 3                |                 |

4) <u>(1)</u> -0-5

R. C. E. College of Englounding and Technolicity (Attionmount) Henolysis 936 G energy 1200

6) 
$$\frac{U^{0}I}{8^{0}0} = 0.5$$
  
9)  $\frac{U \cdot I}{8^{0}0} = 0.5$   
1/2 Regulation: (VN0LOAd - VFUILIDAD) X100  
1. 8.5 - 7 × 100 = 21.4  
7.0  
2. 8-5 - 8 × 100 = 6.25  
8  
3. 8.5 - 8 × 100 = 6.25  
5. 8.5 - 8 × 100 = 6.25  
6. 8.5 - 8 × 100 = 6.25  
7. 8.5 - 8 × 100 = 6.25  
8. 8.5 - 8 × 100 = 6.25  
8. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25  
9. 8.5 - 8 × 100 = 6.25 × 100 = 6.25 × 100 = 6.25 × 100 = 6.25 × 100 = 6.25 × 100 =

R. G. M. College of Engineering and Technology (Autonomous), Nandyal - 518 501 ESTD : 1995

O

tument





|            | EXPT. NO  | FULL WAVE RECTIFIER Date:                                                                                                                                   |
|------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | 5         | WITH FILTERS 9/11/22                                                                                                                                        |
|            | Aim       | To find the ripple factor and percentage                                                                                                                    |
| 20         | *         | regulation of Full-wave Rectifier with filters                                                                                                              |
| 906-       | Apparatus | 1) Transformer                                                                                                                                              |
|            |           | 2) Diodes BY1272                                                                                                                                            |
| )          |           | 3) DC ammeter (0-500 mA)                                                                                                                                    |
| _          | villes    | 4) DC VOItmeter (0-30V)<br>5) DRB<br>6) AC VOItmeter (0-30V)                                                                                                |
|            | A.L       | 7) Inductor 100 mH<br>8) Capacitor 1000 UF                                                                                                                  |
| C          | Theory    | The conversion of Ac into pulsating Dc is<br>called Rectification. Electronic Devices can<br>convert Ac power into Dc power with high                       |
| Srd<br>Pro |           | efficiency.<br>The full wave rectifier consists of a center-<br>tapped transformer, which results in equal<br>voltages above & below the center tap. During |
|            |           | the positive half (ycle, a positive voltage<br>appeals at the anode of D1 while a negative<br>voltage appears at the anode of D2.                           |
|            | R.G       | M. College of Engineering and Technology (Autonomous), Nandyal - 518 501.<br>ESTD : 1995                                                                    |

\*



|                      | 19                                              |
|----------------------|-------------------------------------------------|
|                      | Due to this diode D1 is forward biased. It      |
|                      | results a current Id, through the load R.       |
|                      | During the -ve half cycle, a tve voltage appear |
|                      | at the anode of D2.                             |
| Procedure            | : 1) Make the connections as per the circuit    |
|                      | diagram of fig.1                                |
|                      | 2) Tabulate the voltmeter & ammeter reading     |
| v s-St - paor        | for various values of locid resistance.         |
| tanpă -x-ool         | 3) Find the no load de voltage by opening the   |
| 1 2+2 -<br>SU-00 - 1 | food and note it us vivolad.                    |
| F842                 | 4) Also observe the bugat tout it               |
| 1.5 31               | road resistance on creater for all road         |
| 12-81                | 5) Calcances.                                   |
| 13-01                | a calculate the percentage segulation for all   |
| 10.81                | values of load resistances.                     |
| Star Francisky SP    | 7) plot the graphs for Vacida percentage        |
|                      | regulation vs Idc, ripple factor vs Idc.        |
| v su<br>Negunan      | N Degulation - (VNOLOad - VEUILIMA)             |
| 8. 88                | STO PH XIODS                                    |
| C-# 5                | CVfullcoad)                                     |
| 12 S                 | 100 P.A. (18) FO 0012                           |
| 1. 2                 | Ripple factor = Vac                             |
| POF                  | de de de Vác pi                                 |
| PorP                 | 500 F'4 0'21 0'36                               |
| Ser. Co              | 1 100 - S - O 71 - S - 000 -                    |

| Expected Grap   | phsi-        |             |            |               |                   |
|-----------------|--------------|-------------|------------|---------------|-------------------|
| brased a It     | husurat a    | F add where | 1 211-0    | geregulati    | on                |
| Vac Tribal      | $\uparrow$   |             | 1          | an and        |                   |
| (1)             | SUDDIEL      | h 182 19190 | (C) 30     | 1 results     |                   |
| Diana antina    | KIFT         |             |            | _ /           |                   |
|                 | fuc          | 5 ( C ) ( ) | - Delt [   | annaC[ ]      |                   |
|                 |              | 1 D2 .      | o boli     | 344/40        |                   |
| 15              |              | 6           |            | 1.00          |                   |
| the one and     | man an In    | doh har Lio | Sill de    | CVI M C       | Nukros R          |
|                 | Ide          | Idec        | (Am        |               | Tecome            |
| Cillen ente     | CMAJ         | 4           | FIC EN H   | the grant     | Second            |
| oservations     | ann as mais  | CAHOD BA    | ulate i    | ST IS         |                   |
| the mail and    | Cillian Sun  | la casulou  | L. Mark    |               |                   |
| utn II-section  | HITCH OP     | en circuted | dc VOH     | age VNOL      | $oad = 18-5 \vee$ |
| IN ISE          | Tac          | Vdc         | Vac        | Ripplefact    | or y. Regulation  |
| 100             | 98           | 170 -       | 0.01       | 0.0028        | 115-00            |
| 200             | 63           | 170         | 0.01       | DIDDED        | 95-14             |
| 300             | man apple    | 170 00      | 0.01       | 0:0058        | 32-43             |
| 400             | .38          | 07170       | .0.01      | 00058         | 24.87             |
| 500             | 3.1          | 17.0        | 0.01       | 0:0058        | 18-71             |
| 600             | 27           | 1170        | 0.01.      | 0.0050        | 12+51             |
| 100             | 24           | 17.0        | 0.01       | 0:00 58       | 18-51             |
| his right of    | 21           | 17.0        | 0.01       | 0:00 Ea       | 10.81             |
| 900             | 19           | 17.0        | 0.01       | 0 00 56       | 10.61             |
| 100             | 18           | HUS OF IS   | No o       | 0.0028        | 8.60              |
| 1000            | 1000 Jac     |             | 1 0 01     | 0.00.28       | 001               |
| -section filter |              | Oper        | n circuite | d devottag    | e VNOIDAN -16.5   |
| 100             | is factor is | 99 in white | (my)       | DI MARCA      |                   |
| RL              | Idc          | Vac         | Vac        | Ripple factor | 1. Regulation     |
| 100             | 87.          | 9           | 1-2        | 0.03          | 45-4              |
| 200             | 58           | ALLO .      | 4.9        | 0:12-         | 23.2              |
| 200             | 117          | 12-0        | u-u        | 011           | 27.9              |
| 300             | 3.8          | 10.5        | U-D        | 019           | 24.2              |
| 000             | 27           | 12.0        | 3.9        | 0.16          | 81-2              |
| 600             | 18           | 130         | 0.1        | 0.29          |                   |
|                 | 10           | 14-0        | DIA        | 0.78          | D•1               |
| 700             | 10           | 577 5 70    | 3.0        | 0.36          | 9.09              |
| \$ 00           | 12           | 15-0        | 27         | 0.36          | 9.09              |
| 900             | 8            | 15.0        | 2'6        | 0-36          | 9.09              |
| 1000            | 4            | 15-0        | 2-3        | 0.36          | 9-09              |

.









| EXPT. NO:               | NON-LINEAR WAVE SHAPING - Date:<br>CLIPPING CIRCUITS Date: 15/12/22                        |
|-------------------------|--------------------------------------------------------------------------------------------|
| Aim                     | y 70 study the operation of different clipping                                             |
|                         | circuits.                                                                                  |
|                         | of various clipper circuits for sinusoidal input.                                          |
| Apparatus :<br>Required | Diodes (IN4007) - 21Nos                                                                    |
| ink                     | 2) Transistor (BC-107) - 1 NO.                                                             |
| 125                     | 3) Resistor - 10k-2 - 1 No.                                                                |
| 1.                      | 4) Zener Diodes (IZS.I) - 2 Nos                                                            |
|                         | 5) TRPS - INO.                                                                             |
| 11 1                    | 6) Function generator _ 1 No                                                               |
|                         | 7) CRO - 1 NO.                                                                             |
|                         | e) CRO probes - 3Nois                                                                      |
|                         | 9) connecting wires - As required                                                          |
| 1                       | 10) Bread Board - INO.                                                                     |
| Theory                  | A circuit which cutoff voltage above or below                                              |
| <b>y</b>                | are both at spe Cified revel is called "clipper".                                          |
| 1                       | A clipper which removes a portion of positive                                              |
|                         | half cycle of the input signal is called                                                   |
|                         | "Positive clipper"                                                                         |
| R.                      | G. M. College of Engineering and Technology (Autonomous), Nandyal - 518 501<br>ESTD : 1995 |



22

A clipper circuit that removes the negative half cycle is called negative clipper. The process where by the form of sinusoidal signals is going to be altered by transmitting through a non-linear network is called "Non-Linear wave shaping". Non linear elements (like diodes, transistors) in combi -nation with resistors can function as clipper circuit either the shape of the wave is attenuated (or) the dc level of the wave is altered in the Non-linear wave shaping clipper clippers are basically wave shaping circuits that control the shape of an output wave form. It consists of linear & non-linear elements but does not contain energy storing elements

If bias voltage is placed in series with diode then the circuit is called biased clipper. This bias determines the point where the diade begins to conduct & duration of conduction. With bias, clipping can be done to any percent of the input signal ranging from 1% to 99%.

The construction of the series positive clipper with bias is almost similar to the series positive

R. G. M. College of Engineering and Technology (Autonomous), Nandyal - 518 501 ESTD : 1995

d) Biased - positive & clipper MM 7 Vi lokohm +Vm 10 VPP IN4007-+ IKHZ volt? £ 2V V2 Vo slicea; R Vm e) 11 -MM lokohm Dies 10VPP IN4009 72 NO VRI + TRI VR2 Volt) VP2 1KHZ f 3.51 2 s Vi clipping at two Independent levels; vm d) MM Lokohm Di -U4007 Dz Vm LOVPP Vo x VQ2 1KHZ 1/22 Volt) VRI 7t 21 21 NRI Zener Diode Clippers:e) MM lokohm5% Nm 21 ZOVPP 125.14 V21 JKHZ 720 Volt). IZ5.1 22 V-22 -Vm







|           | 23                                                                                                                                                                                                                                                                                                                                                     |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           | clipper. The only difference is an extra<br>element called battery is used in series<br>positive clipper with bias.<br>The zener dide is acting like a biased did.                                                                                                                                                                                     |
|           | clipping circuit with the bias Voltage being<br>equal to the zener break down voltage.                                                                                                                                                                                                                                                                 |
|           | clipping circuits are also called as "slicers" or<br>"amplitude selectors".                                                                                                                                                                                                                                                                            |
| Procedure | Make the connections as per the circuit diagram<br>shown in the figure.<br>2) set the Function Generator to produce sinusoid<br>signal input Voltage of 10 Vp-p & 1 kHz frequency<br>(For zener diodes clipper, 20 Vp-p, 1 kHz<br>frequency sinusoidal signal is required)<br>3) observe the output waveforms on CRO &<br>plot them on the graph sheet |
| Result    | Hence different non linear wave shapings of<br>clippers are studied a graph is plotted by<br>dividing all possible bigsing's to clipp                                                                                                                                                                                                                  |
|           | and possible of any sto clippers.                                                                                                                                                                                                                                                                                                                      |

R. G. M. College of Engineering and Technology (Autonomous), Nandyal - 518 501 ESTD : 1995

|            |                                                                                            | 24             |
|------------|--------------------------------------------------------------------------------------------|----------------|
| EXPT·NO    | NON- LINEAR WAVE SHAPING -<br>CLAMPING CIRCUITS                                            | Date<br>22/12/ |
| Aim        | = 1) To study the operation of Varia                                                       | 10             |
|            | clamper circuits.                                                                          | <i>43</i>      |
| According  | 2) To observe & plot the output wave<br>of various clamper circuits for sinusoid<br>input: | forms<br>Laf   |
| Degraticed | 1) Resistor - 100kr - 1 No.                                                                | . 44           |
| Requireq   | 2) Function Generator - 1 No.                                                              |                |
|            | 3) Diodes -OAtto - 2Nos                                                                    |                |
|            | (1)  1  RPS  -  1  NO                                                                      | $F(PT)_{1}(x)$ |
|            | 5) CRO - 1NO.                                                                              | 1              |
|            | 6) CRO probes - 3 Nos.                                                                     | 21             |
|            | 7) Capacitor 0.1UF _ 1NO:                                                                  | 1997 - A       |
|            | 8) connecting wires - As required<br>9) Bread Board _ I NO.                                |                |
| Theory :   | A clamper is an electronic circuit that                                                    | HUH gos        |
| 1          | fixes either the positive (or) negative bea                                                | k.             |
|            | excursions of a signal to a defined vol-<br>oy adding a variable positive (or) negative    | tage           |
| 0          | oc voltage to lit                                                                          | 4              |
| - 7        | the process where sinusoidal signals are goin                                              | ng             |
| t          | o be altered by transmitting through a                                                     | ,              |
| R. G.      | M. College of Engineering and Technology (Autonomous), Nandyal - 51<br>ESTD : 1995         | 8 501          |

間







non-linear network is called non-finear wave shaping. Non-linear elements Clike diodes in combination with resistors and capacitors can function as clamping circuit. clamping circuits add a Dc level to an Ac signal. If the circuit pushes the signal upwards then the circuit is said to be a "Positive clamper". when the signal is pushed upwards, the negative peak of the signal meets the zero level. on the other hand, if the circuit pushes the signal downwards then the circuit is Said to be a "Negative clamper".

Procedure: 1) Make the connections as per the circuit diagrams as shown in the figure. 2) Set the Function Generator to produce sinusoidal input Voltage of 10 Vp-p& ICMZ frequency

3) observe the output waveforms on CRO & plot them on the graph Sheet.

Result: Hence different wave a shaping 's of clampers are studied a graph 1s plotted by giving Possible blasing to clampers

6

R. G. M. College of Engineering and Technology (Autonomous), Nandyal - 518 501 ESTD : 1995

|                                                      | 26       |
|------------------------------------------------------|----------|
| EXPT. NO COMMON BASE CONFIGURATION                   | Date     |
| OF BJT                                               | la la la |
| Aim 1. To study the innet and all i                  | 12111    |
| chara ataxiction and and output                      |          |
| file can Course is                                   | comm     |
| two configuration.                                   | * x.     |
| 2-10 obtain the n-parameters in CB<br>Configuration. | un ei    |
| Apparatus: 1. CL 100 s transistor                    |          |
| 2. Resistor 1KR                                      |          |
| 3. Ammeters [(0-30mA) -2]                            | × 1      |
| 4. Voltmeters [CO-30V]                               |          |
| 5. RPS unit                                          |          |
| 6. connecting wires                                  | 9-11-9 T |
| Theory                                               |          |
| In common base configuration, emitte.                | r is     |
| the input terminal, collector is the outp            | out      |
| terminat and base terminal is connected              | ed       |
| as a common terminal for both input E                | e        |
| output. That means the emitter termina               | [ E      |
| common base terminal are known as inp                | ut       |
| terminals whereas the collector terminal             | Π        |
| and common pase-terminal are known a                 | xs       |
| output terminals.                                    |          |
| Duciona Contrati actor                               |          |
| In CB configuration, the base termina                | C        |

R. G. M. College of Engineering and Technology (Autonomous), Nandyal - 518 501 ESTD : 1995

THE ME



is grounded so the common base configuration is also known as grounded base configuration Sometimes common base configuration is referred to as common base amplifier, CB amplifier.

The input signal is applied between the emitter & base terminals while the corresponding output signal is taken across the collector & base terminals. Thus the base terminal of a transistor is common for both input and output terminals and hence it is named as common base configuration. The supply voltage between the base & emitter is denoted by NBE while the supply voltage between collector and base is denoted by VCB.

In CB configuration, the base emitter Junction JE is forward biased & collectorbase junction JC is reverse biased.

Procedure Input characteristics.

l'Make the connections as per the circuit diagram.

2. Keep VCB constant atsv and vary NEE

O.

R. G. M. College of Engineering and Technology (Autonomous), Nandyal - 518 501 ESTD : 1995
abservations:-

Table 1: Input Characteristics of CB Transistor ाचे सालावाचे कोए औ

VCB=5V VCB = OV SIND ItinmA VBE in volts IE in mA VBE in VOLLS 0 0.1 0 0.1 1 2  $\bigcirc$ 0.2 0 0-2 0.3 3 0 0.3 4 10 O 4 0.4 0 0.1 1.0 2.0 0.5 5 0.5 0 2.5 0.55 6 1 0.55 8.0 3 0.6 7 0.6 0.62 0.62 130.0 18 8 0.64 9 30

Table 2: output characteristics of CB Transistor The supply voltages influence the hase s

| r in volts | IcinMA | VCBINMA | TOIMMA                                      |
|------------|--------|---------|---------------------------------------------|
| 5          |        |         | - C                                         |
|            | 1.2    | 5       | 4:0                                         |
| 10         | 1.2    | 10      | 4.2                                         |
| 15         | 1.5    | 15      | Uns                                         |
| 20         | 1.5    | 20      | u.5                                         |
| 25         | 2.0    | 25      | 4.7                                         |
| 30         | 2.0    | 30      | 5.0                                         |
|            | 30     | 30 2.0  | $\frac{25}{30}$ $2 \cdot 0$ $\frac{25}{30}$ |

Reaching : Imput I wand wist rais

- Puerto with any magnitude transmit while a hidd
  - 201000000
- so buy has been all all and very he

$$\frac{92}{40}$$
to tabulate the readings of Voltmeter (VBE)  
and ammeter (JE)  
3. Repeat the above provedure VCB = 10V  
u. Plot the input characteristics as sharon in fig 2.  
and calculate h parameters his, by b from the  
input characteristics:  
1. Vary VEE to keep the input corrent JE  
constant at 2mA.  
2. By Varying VCC, tabulate the readings of  
Voltmeter (VCB) and ammeter (IC)  
3. Repeat the above procedure for IE = 5mA.  
4. Plot the output characteristics as Shoron in  
fig 3. and calculate the h-parameters his, hob  
from output characteristics.  
Calcula:  
hib =  $\frac{\Delta VBE}{\Delta TE}$   
 $\frac{\Delta TE}{\Delta TE}$  (VCB constant =  $\frac{0.62-0.5}{5-0}$  (2000)  
 $hfb = \frac{\Delta TC}{\Delta TE}$  (VCB constant =  $\frac{5-2}{3-2}$  (mA)  
 $hob = \frac{\Delta TC}{\Delta TE}$  (VCB constant =  $\frac{5-2}{3-2}$  (for mA)  
R. C. M. College of Engineering and Technology (Autonomous), Nandyal-518 501  
ESTD: 1995







|   |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 30                                                                                         |
|---|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|
| × | EXPT-NO:                         | COMMON EMITTER CONFIGURATION<br>OF BJT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Date:<br>Alalaz                                                                            |
|   | 09<br>Aim<br>Apparatus<br>Theory | OF BJT<br>1) To obtain the input and output chan<br>of the transistor in common emitter<br>configuration.<br>2) To obtain the h-parameters from th<br>1) CL 100S Transistor<br>2) DC Ammeters [Co-500.UA), (0-20 m/<br>3) DC Voltmeters [Co-1N), (0-20 m/<br>3) DC Voltmeters [Co-1N), (0-20 m/<br>3) DC Voltmeters [Co-1N), (0-20 m/<br>3) DC Voltmeters [Co-300.UA), (0-20 m/<br>3) DC Voltmeters | hlzkz<br>acteristic<br>iegraphs.<br>v]<br>das<br>ouput.<br>n<br>ut is<br>the<br>itter<br>t |
|   |                                  | Parameters are VBE and IB and output<br>Parameters are VCE and IC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                            |
|   |                                  | This type of configurations are mostly<br>in the applications of transistor based<br>amplifiers.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Used                                                                                       |
|   | R.G                              | M. College of Engineering and Technology (Autonomous) Nandval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 518 501                                                                                    |

ALL IN

circuit Diagram:-IB (0-0.1mA) UTKIL B M MA VCO CLIOUS VCE + RPS VBE 🕑 (0-30V) VBB CO-30 RPS (0-1V) (0-30V) Fig1: Circuit diagram for studying input and output characteristics of CE Transistor Activeregion Expected Graphs: IC MA IB(UA) =10V 2000K NCE=5V 60 UA VCE=10 YOUF 1IB=20 VBE(V) VCE cutoff (V)Region Fig2: Input characteristics output Fiq 3: un identignitent Characteristics for the production of them is here

In this configuration the emitter current is equal to the sum of small base current and large collector current. we know that the ratio between collector current and emitter current gives current gain alpha in common Base configuration.

This configuration is mostly used one among all the three configurations. It has medium input and output impedance values. It also has the medium current and voltage gains. But the output signal has a phase shift 1800 i.e both the input & output are inverse to each other.

The typical CE characteristics are Similar to that of a forward biased of p-n diode. But as VCB increases the Gase width decreases

Procedure: Input characteristics:

B

1) connect the circuit as per the diagram.

2) Keep VCE at 5V.

3) NOW VARY VBE insteps and tabulate the values of IB and VBE

u) Repeat the above procedure for VCE = IOV

R. G. M. College of Engineering and Technology (Autonomous), Nandyal - 518 501 ESTD : 1995

## Observations

## Table 1: Input characteristics

| SNO   | VCE=0                   | SVVc       | VCE = S      | Vot    |
|-------|-------------------------|------------|--------------|--------|
| 11111 | VBE in volts            | Ib in UA   | VBE in volts | IBINUA |
| 1.24  | 0.1                     | 50 10 1    | 01           | 45     |
| 2     | 0.2                     | 100        | 0.2          | 102    |
| 3     | 0.3                     | 150        | 0-3          | 148    |
| 4     | 0.4                     | 200        | 0.4          | 196    |
| 5     | 0.5                     | 270        | 0.5          | 250    |
| 6     | 0.55                    | 310        | 0.65         | 275    |
| .7    | 0.6                     | 500        | 0.6          | 306    |
| 8     |                         |            | 0.62         | 315    |
| 9     |                         |            | 0.64         | 320    |
| 10    | e offer the part of the | out implue | 0.66         | 500    |

· V - 1 -

Table 2: output characteristics

the hard place of the second by the second s

|    | IB=50MA |              | 50 MA  | IB=100UA    |           |   |  |
|----|---------|--------------|--------|-------------|-----------|---|--|
|    | SNO     | VCE in volts | Icinma | VCE involts | Icinma    |   |  |
|    | 1       | 2            | 6.0    | 1.2 1. 10   | 201 51065 | 1 |  |
|    | 2       | 5            | 8.0    | 5           | 22        |   |  |
|    | 3       | 10           | 10.0   | 10          | 24        |   |  |
|    | 4       | 15           | 13.0   | 15          | 25        | - |  |
| 10 | 2       | 20           | 19.0   | 20          | 2.6       | - |  |
|    | 6       | 25           | 24.0   | 25          | 26        |   |  |
|    | 7       | 30           | 26.0   | 30          | 28        |   |  |

5) plot the graph between IB and VBE for  
Various values of Ve.  
6) calculate hie, hie from input characteristics  
Output characteristics:  
1) By Varying VBB keep IB at 100UA  
2) Now vary VcE with the help of Vcc and tabulate  
the values of Jc and VcE.  
3) Repeat the above procedure for IB at Soura.  
4) plot the graphs between Jc and Vce.  
5) calculate the help, hole from output characteristics  

$$ATB |_{VCE}$$
 constant  $\frac{0.6-0.3}{(306-150)\times156} = 19400$   
 $hre = \frac{\Delta VBE}{\Delta TB} |_{VCE}$  constant  $\frac{0.6-0.3}{(306-150)\times156} = 3200$   
 $hre = \frac{\Delta TC}{\Delta TB} |_{VCE}$  constant  $\frac{0.6-0.3}{(306-150)\times156} = 3200$   
 $hoe = \frac{\Delta TC}{\Delta VE} = \frac{2.4-8}{(10-5)\times153} = -3.2 KU$ 

R. G. M. College of Engineering and Technology (Autonomous), Nandyal - 518 501 ESTD : 1995







| EXPTNO<br>20 | Drain and Transfer characteristics of<br>JFET                                                                                                                         | Date:<br>2/2/22      |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| Aim          | 1) To obtain the drain and Transfer chara of the given JFET.                                                                                                          | acteristics          |
|              | 2) TO calculate the drain resistance rd and trai<br>-ctance gm of the given JFET.                                                                                     | nscondu              |
|              | 3) To find the pinch off voltage (Vp) and drain                                                                                                                       | to                   |
| Approvatus   | Source Saturation correct (10ss).                                                                                                                                     |                      |
| rippinamo,   | 2) Ammeter (0-20MA)                                                                                                                                                   |                      |
|              | 3) Voltmeter (0-30V)                                                                                                                                                  |                      |
|              | 4) Diode (OA 76)<br>5) Regulated power Supply (RPS)                                                                                                                   |                      |
|              | 6) Bread Board<br>7) connecting wires<br>8) Multimeter                                                                                                                | - 67.0               |
| Theory :     | The Junction field effect transistor (or)<br>is a Voltage controlled three terminal uniper<br>Semiconductor device available in n-channe<br>P-channel configurations. | JFET<br>Slar<br>( Ee |
|              | In the Bipolar Junction transistor, the o                                                                                                                             | utput                |
|              | the input current.                                                                                                                                                    | ial to               |
|              | whe drain-source Voltage Vos is zero, th                                                                                                                              | ere is               |
| F            | R. G. M. College of Engineering and Technology (Autonomous), Nandyal -<br>ESTD : 1995                                                                                 | 518 501              |

Observations; Table1 : Drain or Static Characteristics

|     | VGS=OV     | 21 No. 0 10.00 | VGS=2V      |        | LENGN.    |
|-----|------------|----------------|-------------|--------|-----------|
| SNO | Vpsinvolts | ID(MA)         | VDS (Volts) | ID(mA) | -         |
| ~ 1 | 1 1        | 4 <b>4 1 1</b> | 1           | 0.6    |           |
| 2   | 2          | 6.0            | 2           | 0.6    |           |
| 3   | 3          | 6.2            | 3           | 0.7    |           |
| 4   | 6          | 6.5            | 6           | 1-0    |           |
| 5   | 9          | 6.7            | 9           | 1-0    |           |
| 6   | 12_        | 6.7            | 12          | 1.1    | the other |
| 7   | 15         | 6.8            | 15          | 1-3    | - 10 C    |
| 8   | 18         | 6.8            | 18          | 1-3    |           |
| a   | 21         | 6.8            | 21          | 14.    | -         |
| 10  | 24         | 6.8            | 24          | 1.5    |           |

Transfer characteristics

hand here't le'

(17)

|     | VDS=5          | 5 <b>∨</b> | and the second balances to a term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|----------------|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SNO | Vas (volts)    | Ip(mA)     | stelling of Display 1/2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1   | 0              | 6.5        | A REPORT OF A REPORT OF A REPORT OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 2   | 0-5            | 4.0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3   | and the second | 3.0        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4   | 1-5            | 1-3        | and the colored management of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5   | 2              | 0.9        | " Program in the second of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6   | 2-5            | 0-6        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 7   | 3              | 0.5        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 8   | 3.5            | 0.2        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |                |            | <ul> <li>Constant for the state of the s</li></ul> |

|                                          | 32                                                                                                                                                                                                                                                                                                       |
|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1 | no potential at the drain, so no corrent<br>flows inspite of the fact that the channel is<br>fully open so, $ID = 0$                                                                                                                                                                                     |
|                                          | For small applied voltage VDS, then-type bar act<br>as simple Semiconductor resistor, and the drain<br>current increases linearly with the increase of<br>VDS upto the knee Point:                                                                                                                       |
|                                          | This region, to the left of the knee point of the curve is called the "Ohmic region" as in the region the JFET behaves like as an ordinary resistor - The region of the characteristic in which drain current ID remains constant is called the Pinchoff region. It is also called the amplifier region. |
| Procedures                               | Drain characteristics:<br>DMake the connections as per the circuit diagram<br>2) keep the Vag and Vop at minimum positions before<br>Switch on the RPS Vag=0, Vpp=0V<br>2) Now vary the Vop and tabulate the values of<br>VDS and ID.                                                                    |
| <u>ч</u><br>s)                           | ) Repeat Step.3 for VGS=-2V & -4V<br>Plot the graphs for VDS VS ID for Various values<br>of VGS                                                                                                                                                                                                          |
| 6.<br>-7.                                | ) calculate & from drain (static) characteristics.<br>) when VGS=0 the minimum Value Of VDS for                                                                                                                                                                                                          |

R. G. M. College of Engineering and Technology (Autonomous), Nandyal - 518 501 ESTD : 1995

![](_page_124_Figure_0.jpeg)

which the ID is constant becomes the pinch off  
voltage (Vp) and this constant corrent becomes  
the drain to Source corrent (Ibss) · Note down.  
these Values for the given JFET ·  
**Transfer Characterstics**  
D teep the VDS constant at 5V and Vqs at OV  
by Varying VDD and Vqq respectively.  
2) NOW vary the Vqq and tabulate the values of  
ID and Vqs  
3) Repeat the Step · 2 for VDS = IOV  
W) Plot the graphs for VDS VS ID for different values  
of Vqs and Vqs VS ID for different values of VDS.  
5) calculate gm from the transfer characteristics.  
Pinch - off voltage (Vp) = 3 · 5  
Drain to Source voltage (Ipss) = 6·5 mA  
Drain resistance (rd) = 
$$\frac{AVDS}{AIDS} = \frac{6 \cdot 2}{(6 \cdot 5 - 6)XIG^3} = 8Kn$$
.  
Transconductance (Gm) =  $\frac{AID}{AVqs} = \frac{4 - 0 \cdot 6Xis^3}{2 \cdot 5 - 0 \cdot 5}$   
We constant  
Transconductance (Gm) =  $\frac{AID}{AVqs} = \frac{4 - 0 \cdot 6Xis^3}{2 \cdot 5 - 0 \cdot 5}$   
B. C. M. College of Engineering and Technology (Autonomous), Nandyal - 518 801

![](_page_126_Figure_0.jpeg)

![](_page_127_Picture_0.jpeg)

## **CO-PO ATTAINMENT PROCESS**

| Academic year:       | 2022-23                                        |
|----------------------|------------------------------------------------|
| Regulation:          | R-20                                           |
| Year & SEM:          | II B.Tech., I SEM                              |
| Batch:               | 21                                             |
| Branch:              | Electronics and Communication Engineering      |
| Subject code:        | A0491203 - Electronic Devices and Circuits Lab |
| Name of the Faculty: | Dr. M. Chennakesavulu                          |

| S.No | Reg.No.    | Final<br>Internal<br>Marks(25) | Total Final<br>Marks(75) | External<br>Marks(50) | N CO 1 | N CO 2 | N CO 3 | N CO 4 | NCO 5 |
|------|------------|--------------------------------|--------------------------|-----------------------|--------|--------|--------|--------|-------|
| 1    | 21091A0401 | 18                             | 55                       | 37                    | 73.34  | 73.34  | 73.34  | 73.34  | 73.34 |
| 2    | 21091A0402 | 22                             | 65                       | 43                    | 86.67  | 86.67  | 86.67  | 86.67  | 86.67 |
| 3    | 21091A0403 | 17                             | 20                       | 3                     | 26.67  | 26.67  | 26.67  | 26.67  | 26.67 |
| 4    | 21091A0404 | 19                             | 51                       | 32                    | 68     | 68     | 68     | 68     | 68    |
| 5    | 21091A0405 | 19                             | 55                       | 36                    | 73.34  | 73.34  | 73.34  | 73.34  | 73.34 |
| 6    | 21091A0406 | 21                             | 61                       | 40                    | 81.34  | 81.34  | 81.34  | 81.34  | 81.34 |
| 7    | 21091A0407 | 23                             | 63                       | 40                    | 84     | 84     | 84     | 84     | 84    |
| 8    | 21091A0408 | 21                             | 62                       | 41                    | 82.67  | 82.67  | 82.67  | 82.67  | 82.67 |
| 9    | 21091A0409 | 23                             | 69                       | 46                    | 92     | 92     | 92     | 92     | 92    |
| 10   | 21091A0410 | 22                             | 44                       | 22                    | 58.67  | 58.67  | 58.67  | 58.67  | 58.67 |
| 11   | 21091A0411 | 23                             | 67                       | 44                    | 89.34  | 89.34  | 89.34  | 89.34  | 89.34 |
| 12   | 21091A0412 | 22                             | 67                       | 45                    | 89.34  | 89.34  | 89.34  | 89.34  | 89.34 |
| 13   | 21091A0413 | 18                             | 39                       | 21                    | 52     | 52     | 52     | 52     | 52    |
| 14   | 21091A0415 | 20                             | 46                       | 26                    | 61.34  | 61.34  | 61.34  | 61.34  | 61.34 |
| 15   | 21091A0416 | 23                             | 66                       | 43                    | 88     | 88     | 88     | 88     | 88    |
| 16   | 21091A0417 | 22                             | 62                       | 40                    | 82.67  | 82.67  | 82.67  | 82.67  | 82.67 |
| 17   | 21091A0418 | 20                             | 51                       | 31                    | 68     | 68     | 68     | 68     | 68    |
| 18   | 21091A0419 | 19                             | 45                       | 26                    | 60     | 60     | 60     | 60     | 60    |
| 19   | 21091A0420 | 24                             | 65                       | 41                    | 86.67  | 86.67  | 86.67  | 86.67  | 86.67 |
| 20   | 21091A0421 | 22                             | 61                       | 39                    | 81.34  | 81.34  | 81.34  | 81.34  | 81.34 |
| 21   | 21091A0422 | 21                             | 64                       | 43                    | 85.34  | 85.34  | 85.34  | 85.34  | 85.34 |
| 22   | 21091A0423 | 23                             | 71                       | 48                    | 94.67  | 94.67  | 94.67  | 94.67  | 94.67 |
| 23   | 21091A0424 | 21                             | 66                       | 45                    | 88     | 88     | 88     | 88     | 88    |
| 24   | 21091A0426 | 22                             | 55                       | 33                    | 73.34  | 73.34  | 73.34  | 73.34  | 73.34 |
| 25   | 21091A0427 | 23                             | 63                       | 40                    | 84     | 84     | 84     | 84     | 84    |
| 26   | 21091A0428 | 22                             | 59                       | 37                    | 78.67  | 78.67  | 78.67  | 78.67  | 78.67 |
| 27   | 21091A0429 | 22                             | 68                       | 46                    | 90.67  | 90.67  | 90.67  | 90.67  | 90.67 |
| 28   | 21091A0430 | 21                             | 64                       | 43                    | 85.34  | 85.34  | 85.34  | 85.34  | 85.34 |
| 29   | 21091A0431 | 22                             | 65                       | 43                    | 86.67  | 86.67  | 86.67  | 86.67  | 86.67 |
| 30   | 21091A0432 | 21                             | 46                       | 25                    | 61.34  | 61.34  | 61.34  | 61.34  | 61.34 |
| 31   | 21091A0433 | 19                             | 40                       | 21                    | 53.34  | 53.34  | 53.34  | 53.34  | 53.34 |
| 32   | 21091A0434 | 22                             | 64                       | 42                    | 85.34  | 85.34  | 85.34  | 85.34  | 85.34 |
| 33   | 21091A0435 | 24                             | 68                       | 44                    | 90.67  | 90.67  | 90.67  | 90.67  | 90.67 |
| 34   | 21091A0436 | 20                             | 49                       | 29                    | 65.34  | 65.34  | 65.34  | 65.34  | 65.34 |
| 35   | 21091A0437 | 20                             | 36                       | 16                    | 48     | 48     | 48     | 48     | 48    |

| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 40 $21091A0442$ $23$ $52$ $29$ $69.34$ $69.34$ $69.34$ $69.34$ $69.34$ $69.34$ $41$ $21091A0443$ $21$ $23$ $2$ $30.67$ $30.67$ $30.67$ $30.67$ $30.67$ $42$ $21091A0444$ $17$ $30$ $13$ $40$ $40$ $40$ $40$ $40$ $43$ $21091A0445$ $21$ $45$ $24$ $60$ $60$ $60$ $60$ $60$ $44$ $21091A0446$ $20$ $41$ $21$ $54.67$ $54.67$ $54.67$ $54.67$ $45$ $21091A0447$ $21$ $68$ $47$ $90.67$ $90.67$ $90.67$ $90.67$ $46$ $21091A0447$ $21$ $68$ $44$ $90.67$ $90.67$ $90.67$ $90.67$ $46$ $21091A0449$ $24$ $68$ $44$ $90.67$ $90.67$ $90.67$ $90.67$ $48$ $21091A0450$ $21$ $31$ $10$ $41.34$ $41.34$ $41.34$ $41.34$ $49$ $21091A0450$ $21$ $31$ $10$ $41.34$ $41.34$ $41.34$ $41.34$ $49$ $21091A0451$ $24$ $70$ $46$ $93.34$ $93.34$ $93.34$ $93.34$ $93.34$ $50$ $21091A0452$ $23$ $70$ $47$ $93.34$ $93.34$ $93.34$ $93.34$ $51$ $21091A0455$ $23$ $70$ $47$ $93.34$ $93.34$ $93.34$ $93.34$ $53$ $21091A0455$ $23$ $70$ $47$ </td                                                                                                                                                                                                                                                                                                                                                  |
| 4121091A044321232 $30.67$ $30.67$ $30.67$ $30.67$ $30.67$ 4221091A044417301340404040404321091A044521452460606060604421091A044620412154.6754.6754.6754.6754.674521091A044721684790.6790.6790.6790.6790.674621091A044824724896969696964721091A044924684490.6790.6790.6790.674821091A045021311041.3441.3441.3441.344921091A045124704693.3493.3493.3493.345021091A045223704793.3493.3493.3493.345121091A045320503066.6766.6766.6766.675221091A045423704793.3493.3493.3493.3493.345321091A045523704793.3493.3493.3493.3493.345421091A045624694592929292925521091A045624694592929292925521091A045722                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 42 $21091A0444$ $17$ $30$ $13$ $40$ $40$ $40$ $40$ $40$ $43$ $21091A0445$ $21$ $45$ $24$ $60$ $60$ $60$ $60$ $44$ $21091A0446$ $20$ $41$ $21$ $54.67$ $54.67$ $54.67$ $54.67$ $45$ $21091A0447$ $21$ $68$ $47$ $90.67$ $90.67$ $90.67$ $90.67$ $46$ $21091A0448$ $24$ $72$ $48$ $96$ $96$ $96$ $96$ $47$ $21091A0449$ $24$ $68$ $44$ $90.67$ $90.67$ $90.67$ $90.67$ $48$ $21091A0450$ $21$ $31$ $10$ $41.34$ $41.34$ $41.34$ $41.34$ $49$ $21091A0450$ $21$ $31$ $10$ $41.34$ $41.34$ $41.34$ $41.34$ $49$ $21091A0451$ $24$ $70$ $46$ $93.34$ $93.34$ $93.34$ $93.34$ $50$ $21091A0452$ $23$ $70$ $47$ $93.34$ $93.34$ $93.34$ $93.34$ $51$ $21091A0453$ $20$ $50$ $30$ $66.67$ $66.67$ $66.67$ $52$ $21091A0455$ $23$ $70$ $47$ $93.34$ $93.34$ $93.34$ $93.34$ $53$ $21091A0455$ $23$ $70$ $47$ $93.34$ $93.34$ $93.34$ $93.34$ $54$ $21091A0455$ $23$ $70$ $47$ $93.34$ $93.34$ $93.34$ $93.34$ $55$ $21091A0456$                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 45 $21091A0447$ $21$ $68$ $47$ $90.67$ $90.67$ $90.67$ $90.67$ $90.67$ $90.67$ $46$ $21091A0448$ $24$ $68$ $44$ $90.67$ $90.67$ $90.67$ $90.67$ $90.67$ $48$ $21091A0449$ $24$ $68$ $44$ $90.67$ $90.67$ $90.67$ $90.67$ $90.67$ $48$ $21091A0450$ $21$ $31$ $10$ $41.34$ $41.34$ $41.34$ $41.34$ $41.34$ $49$ $21091A0451$ $24$ $70$ $46$ $93.34$ $93.34$ $93.34$ $93.34$ $93.34$ $50$ $21091A0452$ $23$ $70$ $47$ $93.34$ $93.34$ $93.34$ $93.34$ $93.34$ $51$ $21091A0453$ $20$ $50$ $30$ $66.67$ $66.67$ $66.67$ $66.67$ $52$ $21091A0453$ $20$ $50$ $30$ $66.67$ $66.67$ $66.67$ $66.67$ $52$ $21091A0455$ $23$ $70$ $47$ $93.34$ $93.34$ $93.34$ $93.34$ $93.34$ $53$ $21091A0455$ $23$ $70$ $47$ $93.34$ $93.34$ $93.34$ $93.34$ $93.34$ $54$ $21091A0455$ $23$ $70$ $47$ $93.34$ $93.34$ $93.34$ $93.34$ $93.34$ $54$ $21091A0456$ $24$ $69$ $45$ $92$ $92$ $92$ $92$ $55$ $21091A0457$ $22$ $48$ $26$ $64$ $64$ $64$ $64$ <tr< td=""></tr<>                                                                                                                                                                                                                                                                                                                               |
| 46 $21091A0448$ $24$ $72$ $48$ $96$ $96$ $96$ $96$ $96$ $47$ $21091A0449$ $24$ $68$ $44$ $90.67$ $90.67$ $90.67$ $90.67$ $90.67$ $48$ $21091A0450$ $21$ $31$ $10$ $41.34$ $41.34$ $41.34$ $41.34$ $41.34$ $49$ $21091A0451$ $24$ $70$ $46$ $93.34$ $93.34$ $93.34$ $93.34$ $93.34$ $50$ $21091A0452$ $23$ $70$ $47$ $93.34$ $93.34$ $93.34$ $93.34$ $93.34$ $51$ $21091A0452$ $23$ $70$ $47$ $93.34$ $93.34$ $93.34$ $93.34$ $93.34$ $51$ $21091A0453$ $20$ $50$ $30$ $66.67$ $66.67$ $66.67$ $66.67$ $52$ $21091A0455$ $23$ $70$ $47$ $93.34$ $93.34$ $93.34$ $93.34$ $93.34$ $53$ $21091A0455$ $23$ $70$ $47$ $93.34$ $93.34$ $93.34$ $93.34$ $93.34$ $54$ $21091A0455$ $23$ $70$ $47$ $93.34$ $93.34$ $93.34$ $93.34$ $93.34$ $54$ $21091A0456$ $24$ $69$ $45$ $92$ $92$ $92$ $92$ $55$ $21091A0457$ $22$ $48$ $26$ $64$ $64$ $64$ $64$ $56$ $21091A0459$ $22$ $44$ $22$ $58.67$ $58.67$ $58.67$ $58.67$ $58$ $21091A0460$ <                                                                                                                                                                                                                                                                                                                                                    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5621091A045823553273.3473.3473.3473.3473.345721091A045922442258.6758.6758.6758.6758.675821091A046023674489.3489.3489.3489.3489.345921091A046124704693.3493.3493.3493.3493.346021091A046223714894.6794.6794.6794.676121091A0463226341848484846221091A046419291038.6738.6738.6738.6738.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5721091A045922442258.6758.6758.6758.6758.675821091A046023674489.3489.3489.3489.3489.345921091A046124704693.3493.3493.3493.3493.346021091A046223714894.6794.6794.6794.6794.676121091A0463226341848484846221091A046419291038.6738.6738.6738.6738.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5821091A046023674489.3489.3489.3489.3489.345921091A046124704693.3493.3493.3493.3493.346021091A046223714894.6794.6794.6794.6794.676121091A0463226341848484846221091A046419291038.6738.6738.6738.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 5921091A046124704693.3493.3493.3493.3493.346021091A046223714894.6794.6794.6794.6794.676121091A046322634184848484846221091A046419291038.6738.6738.6738.6738.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 60         21091A0462         23         71         48         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67         94.67<    |
| 61         21091A0463         22         63         41         84         84         84         84         84           62         21091A0464         19         29         10         38.67         38.67         38.67         38.67         38.67         38.67         38.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 62 21091A0464 19 <sup>29</sup> 10 38.67 38.67 38.67 38.67 38.67 38.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 63         22095A0402         24         69         45         92         92         92         92         92         92                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 64         22095A0403         24         66         42         88         88         88         88         88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 65         22095A0404         24         65         41         86.67         86.67         86.67         86.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 66         22095A0406         24         72         48         96         96         96         96         96         96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 67 22095A0410 24 72 48 96 96 96 96 96 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 68         22095A0416         24         64         40         85.34         85.34         85.34         85.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 70 22095A0420 24 72 48 96 96 96 96 96 96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 71 22095A0424 24 49 25 65.34 65.34 65.34 65.34 65.34 65.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 72 22095A0427 23 67 44 89.34 89.34 89.34 89.34 89.34 89.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 73 22095A0433 18 05 45 84 84 84 84 84 84 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 74         21091A0465         20         61         41         81.34         81.34         81.34         81.34           74         21091A0465         20         61         41         81.34         81.34         81.34         81.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 75         21091A0466         18         30         12         40         40         40         40           76         24004A0467         24         40         40         40         40         40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| //         21091A0468         18         23         /         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34         33.34 </td |
| 78         21091A0469         20         61         41         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34<    |
| <u>79 21091A0470 23 55 30 70.67 70.67 70.67 70.67 70.67 70.67</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 80         21091A04/1         22         30         34         74.67         74.67         74.67           91         21091A0472         22         44         24         50 57         50 57         50 57         50 57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| δ1         21091A04/2         23         21         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58.6/         58     |
| 02         21071A0473         22         33         41         84         84         84         84           93         21091A0474         19         44         26         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         5967         59677         59677         59677                                                       |

| 84         21091A0475         22         48         26         64         64         64         64         64           85         21091A0477         21         64         43         85.34         85.34         85.34         85.34         85.34         85.34           86         21091A0478         21         35         14         4667         4667         4667         4667         4667           88         21091A0479         21         49         28         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34                                                                                                                                                           | S.No | Reg.No.    | Final<br>Internal<br>Marks(25) | Total Final<br>Marks(75) | External<br>Marks(50) | N CO 1 | N CO 2 | N CO 3 | N CO 4 | NCO 5 |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|--------------------------------|--------------------------|-----------------------|--------|--------|--------|--------|-------|
| 8521091A047621 $64$ 4385.3485.3485.3485.3485.348621091A047721472662.6762.6762.6762.6762.678721091A0478213511446.6746.6746.6746.678821091A047921492865.3465.3465.3465.3465.349021091A048017412454.6754.6754.6754.679021091A048121644385.3485.3485.3485.3485.349121091A048223704793.3493.3493.3493.3493.349221091A048322462461.3461.3461.3461.3461.349321091A0485214827646464649521091A048623684590.6790.6790.6790.679621091A048621573676767676769821091A048921452460606060609921091A048921452460606060609921091A0489214525606060606010021091A049121523169.3469.3469.3469.3469.3410121091A0492<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 84   | 21091A0475 | 22                             | 48                       | 26                    | 64     | 64     | 64     | 64     | 64    |
| 8621091A047721472662.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.6762.67<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 85   | 21091A0476 | 21                             | 64                       | 43                    | 85.34  | 85.34  | 85.34  | 85.34  | 85.34 |
| 87         21091A0478         21         35         14         4667         4667         4667         4667         4667         4667         4667         4667         4667         4667         4667         4667         4667         4667         4667         4667         4667         4667         4667         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         5467         56         56         56 <td>86</td> <td>21091A0477</td> <td>21</td> <td>47</td> <td>26</td> <td>62.67</td> <td>62.67</td> <td>62.67</td> <td>62.67</td> <td>62.67</td> | 86   | 21091A0477 | 21                             | 47                       | 26                    | 62.67  | 62.67  | 62.67  | 62.67  | 62.67 |
| 8821091A047921492865.3465.3465.3465.3465.3465.348921091A048017412454.6754.6754.6754.679021091A048121644385.3485.3485.3485.349121091A048223704793.3493.3493.3493.3493.3493.349221091A048322462461.3461.3461.3461.3461.349421091A0485214827646464649521091A048521462561.3461.3461.3461.3461.349721091A048721462561.3461.3461.3461.3461.349721091A048921452460606060609821091A0490194223565656565610021091A0490194221555656565610221091A0490121523169.3469.3469.3469.3469.3410321091A0495204525606060606010421091A0495204525606060606010421091A04982042225656565656105<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 87   | 21091A0478 | 21                             | 35                       | 14                    | 46.67  | 46.67  | 46.67  | 46.67  | 46.67 |
| 8921091A048017412454.6754.6754.6754.6754.679021091A048121644385.3485.3485.3485.3485.349121091A048223704793.3493.3493.3493.3493.349221091A048322462461.3461.3461.3461.349321091A0485214827646464649521091A0485214827646464649521091A048521462561.3461.3461.3461.3461.349721091A048321452460606060609821091A048921452460606060609921091A048921414223555656565610021091A049121614081.3481.3481.3481.3481.3410121091A0493214223565656565610221091A04932142215656565610321091A04932142225656565610321091A0495204525606060606010421091A0495204525565                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 88   | 21091A0479 | 21                             | 49                       | 28                    | 65.34  | 65.34  | 65.34  | 65.34  | 65.34 |
| 9021091A048121644385.3485.3485.3485.3485.3485.349121091A048223704793.3493.3493.3493.3493.349221091A048322462461.3461.3461.3461.3461.349321091A048521321142.6742.6742.6742.6742.679421091A0485214827646464649521091A048721462561.3461.3461.3361.349721091A0489214524606060609921091A0489214524606060609921091A04892142215656565610021091A049121614081.3481.3481.3481.3481.3410121091A04932142215656565610021091A049320422561.3465.3465.3465.3410121091A049720563674.6774.6774.6774.6710621091A049720563674.6774.6774.6774.6710621091A049021624182.6782.6782.6782.6782.6710721091A04A12249276                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 89   | 21091A0480 | 17                             | 41                       | 24                    | 54.67  | 54.67  | 54.67  | 54.67  | 54.67 |
| 9121091A048223704793.3493.3493.3493.3493.3493.349221091A048322462461.3461.3461.3461.3461.349321091A0485214827646464649521091A0485214827646464649521091A048623684590.6790.6790.6790.679621091A048721462561.3461.3461.3461.3461.349721091A0489214524606060609821091A04892142235656565610021091A049121614081.3481.3481.3481.3481.3410121091A049121523169.3469.3469.3469.3469.3410221091A049121523169.3469.3469.3469.3469.3410321091A0492204222565656565610421091A049421523169.3469.3465.3465.3465.3410321091A0495204525606060606010421091A049622492765.3465.3465.3465.3410521091A049720 <t< td=""><td>90</td><td>21091A0481</td><td>21</td><td>64</td><td>43</td><td>85.34</td><td>85.34</td><td>85.34</td><td>85.34</td><td>85.34</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 90   | 21091A0481 | 21                             | 64                       | 43                    | 85.34  | 85.34  | 85.34  | 85.34  | 85.34 |
| 9221091A048322462461.3461.3461.3461.3461.349321091A048521321142.6742.6742.6742.6742.679421091A0485214827646464649521091A048721462561.3461.3461.3461.3461.349721091A048721452460606060609821091A048921452460606060609921091A0490194223565656565610021091A049121614081.3481.3481.3481.3481.3410121091A04922142215656565610221091A04932142215656565610321091A04922045256060606010421091A049622492765.3465.3465.3465.3465.3410521091A049720563674.6774.6774.6774.6774.6710621091A0498204222565656565610721091A04942160398080808010921091A044822492765.3465.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 91   | 21091A0482 | 23                             | 70                       | 47                    | 93.34  | 93.34  | 93.34  | 93.34  | 93.34 |
| 9321091A048421321142.6742.6742.6742.6742.6742.679421091A048521482764646464649521091A048623684590.6790.6790.6790.6790.679621091A048721462561.3461.3461.3461.3461.349721091A0488214524606060609921091A04901942235656565610021091A049121614081.3481.3481.3481.3410121091A04932142215656565610221091A04932142215656565610221091A04932142215656565610221091A049421523169.3469.3469.3469.3410321091A04952042225656565610521091A049720563674.6774.6774.6774.6710621091A049921624182.6782.6782.6782.6710721091A049921624182.6782.6782.6782.6710821091A049921624182.6766.6766.6766.7 </td <td>92</td> <td>21091A0483</td> <td>22</td> <td>46</td> <td>24</td> <td>61.34</td> <td>61.34</td> <td>61.34</td> <td>61.34</td> <td>61.34</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 92   | 21091A0483 | 22                             | 46                       | 24                    | 61.34  | 61.34  | 61.34  | 61.34  | 61.34 |
| 9421091A04852148276464646464649521091A048623684590.6790.6790.6790.6790.679621091A048721462561.3461.3461.3461.3461.349721091A048821452460606060609821091A048921452460606060609921091A0490194223565656565610021091A049121614081.3481.3481.3481.3481.3410121091A04932142215656565610221091A04932145256060606010421091A04952045256060606010421091A049622492765.3465.3465.3465.3410521091A049720563674.6774.6774.6774.6710621091A049921624182.6782.6782.6782.6782.6710821091A040216039808080808010921091A044222492765.3465.3465.3465.3465.3410921091A04A2224927<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 93   | 21091A0484 | 21                             | 32                       | 11                    | 42.67  | 42.67  | 42.67  | 42.67  | 42.67 |
| 9521091A048623684590.6790.6790.6790.6790.679621091A048721462561.3461.3461.3461.3461.349721091A048821573676767676769821091A048921452460606060609921091A0490194223565656565610021091A049121614081.3481.3481.3481.3481.3410121091A0493214221565656565610221091A0493214221565656565610321091A0495204525606060606010421091A049622492765.3465.3465.3465.3465.3410521091A049720563674.6774.6774.6774.6774.6710621091A0498204222565656565610721091A04902160398080808010921091A04A02160398080808010921091A04A222492765.3465.3465.3465.3410921091A04A2224927                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 94   | 21091A0485 | 21                             | 48                       | 27                    | 64     | 64     | 64     | 64     | 64    |
| 9621091A048721462561.3461.3461.3461.3461.349721091A0488215736767676769821091A0490194524606060609921091A04901942235656565610021091A049121614081.3481.3481.3481.3481.3410121091A04932142215656565610221091A049421523169.3469.3469.3469.3410321091A04952045256060606010421091A04952045256060606010521091A049720563674.6774.6774.6774.6710621091A04982042225656565610721091A049921624182.6782.6782.6782.6710821091A04A022492765.3465.3465.3465.3465.3410821091A04A12248266464646411021091A04A222492765.3465.3465.3465.3411121091A04A323502766.6766.6766.6766.6711221091A04A5<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 95   | 21091A0486 | 23                             | 68                       | 45                    | 90.67  | 90.67  | 90.67  | 90.67  | 90.67 |
| 9721091A04882157367676767676769821091A048921452460606060609921091A0490194223565656565610021091A049121614081.3481.3481.3481.3481.3410121091A04932142215656565610221091A049421523169.3469.3469.3469.3469.3410321091A0495204525606060606010421091A049622492765.3465.3465.3465.3465.3410521091A049720563674.6774.6774.6774.6774.6710621091A049921624182.6782.6782.6782.6782.6710821091A040222492765.3465.3465.3465.3465.3410921091A04A122492765.3465.465.3465.3465.3411021091A04A222492765.3465.3465.3465.3465.3411121091A04A222492765.3465.466.766.6766.6711221091A04A222492765.3465.3465.3465                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 96   | 21091A0487 | 21                             | 46                       | 25                    | 61.34  | 61.34  | 61.34  | 61.34  | 61.34 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 97   | 21091A0488 | 21                             | 57                       | 36                    | 76     | 76     | 76     | 76     | 76    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 98   | 21091A0489 | 21                             | 45                       | 24                    | 60     | 60     | 60     | 60     | 60    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 99   | 21091A0490 | 19                             | 42                       | 23                    | 56     | 56     | 56     | 56     | 56    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 100  | 21091A0491 | 21                             | 61                       | 40                    | 81.34  | 81.34  | 81.34  | 81.34  | 81.34 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 101  | 21091A0493 | 21                             | 42                       | 21                    | 56     | 56     | 56     | 56     | 56    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 102  | 21091A0494 | 21                             | 52                       | 31                    | 69.34  | 69.34  | 69.34  | 69.34  | 69.34 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 103  | 21091A0495 | 20                             | 45                       | 25                    | 60     | 60     | 60     | 60     | 60    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 104  | 21091A0496 | 22                             | 49                       | 27                    | 65.34  | 65.34  | 65.34  | 65.34  | 65.34 |
| 10621091A0498204222565656565610721091A049921 $62$ 41 $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ 10821091A04A021 $60$ 39808080808010921091A04A122 $48$ $26$ $64$ $64$ $64$ $64$ 11021091A04A222 $49$ 27 $65.34$ $65.34$ $65.34$ $65.34$ $65.34$ 11121091A04A323 $50$ 27 $66.67$ $66.67$ $66.67$ $66.67$ $66.67$ 11221091A04A421 $57$ $36$ $76$ $76$ $76$ $76$ 11321091A04A522 $45$ 23 $60$ $60$ $60$ $60$ 11421091A04A522 $45$ 23 $60$ $60$ $60$ $60$ 11421091A04A522 $45$ 23 $60$ $60$ $60$ $60$ 11421091A04A522 $45$ 23 $62$ $39$ $82.67$ $82.67$ $82.67$ $82.67$ 11621091A04A723 $56$ $33$ $74.67$ $74.67$ $74.67$ $74.67$ $82.67$ $82.67$ 11721091A04B023 $43$ 20 $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ 11821091A04B120 $45$ 25 $60$ $60$ $60$ $60$ 120210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 105  | 21091A0497 | 20                             | 56                       | 36                    | 74.67  | 74.67  | 74.67  | 74.67  | 74.67 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 106  | 21091A0498 | 20                             | 42                       | 22                    | 56     | 56     | 56     | 56     | 56    |
| 10821091A04A021603980808080808010921091A04A1224826646464646411021091A04A222492765.3465.3465.3465.3465.3411121091A04A323502766.6766.6766.6766.6766.6711221091A04A4215736767676767611321091A04A5224523606060606011421091A04A5224523606060606011421091A04A6214827646464646411521091A04A723563374.6774.6774.6774.6774.6711621091A04A723623982.6782.6782.6782.6782.6711721091A04A922492765.3465.3465.3465.3465.3411821091A04B023432057.3457.3457.3457.3457.3411921091A04B12045256060606012021091A04B222462461.3461.3461.3461.3412121091A04B32263418484848412221091A04B3 <t< td=""><td>107</td><td>21091A0499</td><td>21</td><td>62</td><td>41</td><td>82.67</td><td>82.67</td><td>82.67</td><td>82.67</td><td>82.67</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 107  | 21091A0499 | 21                             | 62                       | 41                    | 82.67  | 82.67  | 82.67  | 82.67  | 82.67 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 108  | 21091A04A0 | 21                             | 60                       | 39                    | 80     | 80     | 80     | 80     | 80    |
| 110 $21091A04A2$ $22$ $49$ $27$ $65.34$ $65.34$ $65.34$ $65.34$ $65.34$ $65.34$ $65.34$ 111 $21091A04A3$ $23$ $50$ $27$ $66.67$ $66.67$ $66.67$ $66.67$ $66.67$ 112 $21091A04A4$ $21$ $57$ $36$ $76$ $76$ $76$ $76$ $76$ 113 $21091A04A5$ $22$ $45$ $23$ $60$ $60$ $60$ $60$ $60$ 114 $21091A04A6$ $21$ $48$ $27$ $64$ $64$ $64$ $64$ 115 $21091A04A7$ $23$ $56$ $33$ $74.67$ $74.67$ $74.67$ $74.67$ 116 $21091A04A7$ $23$ $62$ $39$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ 117 $21091A04A9$ $22$ $49$ $27$ $65.34$ $65.34$ $65.34$ $65.34$ $65.34$ 118 $21091A04B0$ $23$ $43$ $20$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ 119 $21091A04B1$ $20$ $45$ $25$ $60$ $60$ $60$ $60$ 120 $21091A04B2$ $22$ $46$ $24$ $61.34$ $61.34$ $61.34$ $61.34$ 121 $21091A04B3$ $22$ $63$ $41$ $84$ $84$ $84$ 122 $21091A04B4$ $22$ $61$ $39$ $81.34$ $81.34$ $81.34$ 123 $21091A04B5$ $22$ $50$ $28$ $66.67$ $66.67$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109  | 21091A04A1 | 22                             | 48                       | 26                    | 64     | 64     | 64     | 64     | 64    |
| 111 $21091A04A3$ 23 $50$ 27 $66.67$ $66.67$ $66.67$ $66.67$ $66.67$ $66.67$ 112 $21091A04A4$ 21 $57$ $36$ $76$ $76$ $76$ $76$ $76$ 113 $21091A04A5$ $22$ $45$ $23$ $60$ $60$ $60$ $60$ $60$ $114$ $21091A04A6$ $21$ $48$ $27$ $64$ $64$ $64$ $64$ $64$ $115$ $21091A04A7$ $23$ $56$ $33$ $74.67$ $74.67$ $74.67$ $74.67$ $74.67$ $116$ $21091A04A8$ $23$ $62$ $39$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $117$ $21091A04A9$ $22$ $49$ $27$ $65.34$ $65.34$ $65.34$ $65.34$ $118$ $21091A04B0$ $23$ $43$ $20$ $57.34$ $57.34$ $57.34$ $57.34$ $119$ $21091A04B1$ $20$ $45$ $25$ $60$ $60$ $60$ $60$ $120$ $21091A04B2$ $22$ $46$ $24$ $61.34$ $61.34$ $61.34$ $61.34$ $121$ $21091A04B3$ $22$ $63$ $41$ $84$ $84$ $84$ $122$ $21091A04B3$ $22$ $61$ $39$ $81.34$ $81.34$ $81.34$ $123$ $21091A04B4$ $22$ $61$ $39$ $81.34$ $81.34$ $81.34$ $123$ $21091A04B5$ $22$ $50$ $28$ $66.67$ $66.67$ $66.67$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 110  | 21091A04A2 | 22                             | 49                       | 27                    | 65.34  | 65.34  | 65.34  | 65.34  | 65.34 |
| 11221091A04A421 $57$ 3676767676767611321091A04A5224523606060606011421091A04A6214827646464646411521091A04A723563374.6774.6774.6774.6774.6711621091A04A823623982.6782.6782.6782.6782.6711721091A04A922492765.3465.3465.3465.3465.3411821091A04B023432057.3457.3457.3457.3457.3411921091A04B1204525606060606012021091A04B222462461.3461.3461.3461.3461.3412121091A04B32263418484848412221091A04B322613981.3481.3481.3481.3412321091A04B522502866.6766.6766.6766.6766.6712421091A04B621432257.3457.3457.3457.3457.3412521091A04B722644285.3485.3485.3485.3412621091A04B923502766.6766.6766.6766.6766.67 <td>111</td> <td>21091A04A3</td> <td>23</td> <td>50</td> <td>27</td> <td>66.67</td> <td>66.67</td> <td>66.67</td> <td>66.67</td> <td>66.67</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 111  | 21091A04A3 | 23                             | 50                       | 27                    | 66.67  | 66.67  | 66.67  | 66.67  | 66.67 |
| 113 $21091A04A5$ $22$ $45$ $23$ $60$ $60$ $60$ $60$ $60$ $60$ 114 $21091A04A6$ $21$ $48$ $27$ $64$ $64$ $64$ $64$ $64$ 115 $21091A04A7$ $23$ $56$ $33$ $74.67$ $74.67$ $74.67$ $74.67$ $74.67$ 116 $21091A04A8$ $23$ $62$ $39$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ 117 $21091A04A9$ $22$ $49$ $27$ $65.34$ $65.34$ $65.34$ $65.34$ $65.34$ 118 $21091A04B0$ $23$ $43$ $20$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ 119 $21091A04B1$ $20$ $45$ $25$ $60$ $60$ $60$ $60$ 120 $21091A04B2$ $22$ $46$ $24$ $61.34$ $61.34$ $61.34$ $61.34$ 121 $21091A04B3$ $22$ $63$ $41$ $84$ $84$ $84$ 122 $21091A04B3$ $22$ $61$ $39$ $81.34$ $81.34$ $81.34$ 123 $21091A04B5$ $22$ $50$ $28$ $66.67$ $66.67$ $66.67$ $66.67$ 124 $21091A04B5$ $22$ $64$ $42$ $85.34$ $85.34$ $85.34$ $85.34$ 125 $21091A04B6$ $21$ $43$ $22$ $57.34$ $57.34$ $57.34$ $57.34$ 125 $21091A04B7$ $22$ $64$ $42$ $85.34$ $85.34$ $85.34$ <t< td=""><td>112</td><td>21091A04A4</td><td>21</td><td>57</td><td>36</td><td>76</td><td>76</td><td>76</td><td>76</td><td>76</td></t<>                                                                                                                                                                                                                                                                                                                                        | 112  | 21091A04A4 | 21                             | 57                       | 36                    | 76     | 76     | 76     | 76     | 76    |
| 11421091A04A621482764646464646411521091A04A723563374.6774.6774.6774.6774.6711621091A04A823623982.6782.6782.6782.6782.6711721091A04A922492765.3465.3465.3465.3465.3411821091A04B023432057.3457.3457.3457.3457.3411921091A04B1204525606060606012021091A04B222462461.3461.3461.3461.3461.3412121091A04B32263418484848412221091A04B322613981.3481.3481.3481.3412321091A04B522502866.6766.6766.6766.6712421091A04B621432257.3457.3457.3457.3457.3412521091A04B722644285.3485.3485.3485.3485.3412521091A04B722644285.3485.3485.3485.3412621091A04B923502766.6766.6766.6766.6766.6712421091A04B923502766.6766.6766.6766.67 <td>113</td> <td>21091A04A5</td> <td>22</td> <td>45</td> <td>23</td> <td>60</td> <td>60</td> <td>60</td> <td>60</td> <td>60</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 113  | 21091A04A5 | 22                             | 45                       | 23                    | 60     | 60     | 60     | 60     | 60    |
| 115 $21091A04A7$ $23$ $56$ $33$ $74.67$ $74.67$ $74.67$ $74.67$ $74.67$ $74.67$ $74.67$ 116 $21091A04A8$ $23$ $62$ $39$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ 117 $21091A04A9$ $22$ $49$ $27$ $65.34$ $65.34$ $65.34$ $65.34$ $65.34$ 118 $21091A04B0$ $23$ $43$ $20$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ 119 $21091A04B1$ $20$ $45$ $25$ $60$ $60$ $60$ $60$ 120 $21091A04B2$ $22$ $46$ $24$ $61.34$ $61.34$ $61.34$ $61.34$ 121 $21091A04B3$ $22$ $63$ $41$ $84$ $84$ $84$ 122 $21091A04B4$ $22$ $61$ $39$ $81.34$ $81.34$ $81.34$ $81.34$ 123 $21091A04B5$ $22$ $50$ $28$ $66.67$ $66.67$ $66.67$ $66.67$ 124 $21091A04B5$ $22$ $64$ $42$ $85.34$ $85.34$ $85.34$ $85.34$ 125 $21091A04B7$ $22$ $64$ $42$ $85.34$ $85.34$ $85.34$ $85.34$ 126 $21091A04B7$ $22$ $64$ $42$ $85.34$ $85.34$ $85.34$ $85.34$ 126 $21091A04B7$ $22$ $64$ $42$ $85.34$ $85.34$ $85.34$ $85.34$ 126 $21091A04B7$ $22$ $64$ $42$ $85.34$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 114  | 21091A04A6 | 21                             | 48                       | 27                    | 64     | 64     | 64     | 64     | 64    |
| 116 $21091A04A8$ 23 $62$ 39 $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ $82.67$ </td <td>115</td> <td>21091A04A7</td> <td>23</td> <td>56</td> <td>33</td> <td>74.67</td> <td>74.67</td> <td>74.67</td> <td>74.67</td> <td>74.67</td>                                                                                                                                                                                | 115  | 21091A04A7 | 23                             | 56                       | 33                    | 74.67  | 74.67  | 74.67  | 74.67  | 74.67 |
| 11721091A04A922492765.3465.3465.3465.3465.3465.3411821091A04B023432057.3457.3457.3457.3457.3411921091A04B1204525606060606012021091A04B222462461.3461.3461.3461.3461.3412121091A04B3226341848484848412221091A04B322613981.3481.3481.3481.3412321091A04B522502866.6766.6766.6766.6712421091A04B621432257.3457.3457.3457.3457.3412521091A04B722644285.3485.3485.3485.3485.3412621091A04B923502766.6766.6766.6766.6766.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 116  | 21091A04A8 | 23                             | 62                       | 39                    | 82.67  | 82.67  | 82.67  | 82.67  | 82.67 |
| 118 $21091A04B0$ 234320 $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $60$ 120 $21091A04B2$ 224624 $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $61.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81.34$ $81$                                                                                                                                                                                                                                                                                                                                                       | 117  | 21091A04A9 | 22                             | 49                       | 27                    | 65.34  | 65.34  | 65.34  | 65.34  | 65.34 |
| 11921091A04B120452560606060606012021091A04B222462461.3461.3461.3461.3461.3412121091A04B32263418484848412221091A04B422613981.3481.3481.3481.3412321091A04B522502866.6766.6766.6766.6712421091A04B621432257.3457.3457.3457.3412521091A04B722644285.3485.3485.3485.3412621091A04B923502766.6766.6766.6766.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 118  | 21091A04B0 | 23                             | 43                       | 20                    | 57.34  | 57.34  | 57.34  | 57.34  | 57.34 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 119  | 21091A04B1 | 20                             | 45                       | 25                    | 60     | 60     | 60     | 60     | 60    |
| 121       21091A04B3       22       63       41       84       84       84       84       84         122       21091A04B4       22       61       39       81.34       81.34       81.34       81.34       81.34         123       21091A04B5       22       50       28       66.67       66.67       66.67       66.67       66.67         124       21091A04B6       21       43       22       57.34       57.34       57.34       57.34       57.34         125       21091A04B7       22       64       42       85.34       85.34       85.34       85.34       85.34         126       21091A04B9       23       50       27       66.67       66.67       66.67       66.67       66.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 120  | 21091A04B2 | 22                             | 40                       | 24                    | 61.34  | 61.34  | 61.34  | 61.34  | 61.34 |
| 122       21091A04B4       22       61       39       81.34       81.34       81.34       81.34       81.34         123       21091A04B5       22       50       28       66.67       66.67       66.67       66.67       66.67         124       21091A04B6       21       43       22       57.34       57.34       57.34       57.34       57.34         125       21091A04B7       22       64       42       85.34       85.34       85.34       85.34         126       21091A04B9       23       50       27       66.67       66.67       66.67       66.67       66.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 121  | 21091A04B3 | 22                             | 61                       | 41                    | 84     | 84     | 84     | 84     | 84    |
| 123       21091A04B5       22       50       28       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67       66.67                                                                                                                                                                                         | 122  | 21091A04B4 | 22                             | 50                       | 39                    | 81.34  | 81.34  | 81.34  | 81.34  | 81.34 |
| 124         21091A04B6         21         13         22         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34         57.34                                                                                                         | 123  | 21091A04B5 | 22                             | 43                       | 28                    | 66.67  | 66.67  | 66.67  | 66.67  | 66.67 |
| 125         21091A04B7         22         61         42         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34                                                                                                         | 124  | 21091A04B6 | 21                             | 64                       | 22                    | 57.34  | 57.34  | 57.34  | 57.34  | 57.34 |
| 120 21091A04B9 23 27 66.67 66.67 66.67 66.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 125  | 21091A04B7 | 22                             | 50                       | 42                    | 85.34  | 85.34  | 85.34  | 85.34  | 85.34 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 126  | 21091A04B9 | 23                             | 67                       | 27                    | 66.67  | 66.67  | 66.67  | 66.67  | 66.67 |
| 12/         21091A04C0         23         67         44         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34                                                                                                         | 127  | 21091A04C0 | 23                             | 46                       | 44                    | 89.34  | 89.34  | 89.34  | 89.34  | 89.34 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 128  | 21091A04C1 | 22                             | 45                       | 24                    | 01.34  | 01.34  | 01.34  | 01.34  | 61.34 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 129  | 21071A04C2 | 22                             | 66                       | 43                    | 00     | 00     | 00     | 00     | 00    |

| 131         21091A04C4         23         48         25         64         64         64         64         64         64           132         21091A04C5         23         60         37         60         606         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         9067         <                                                                                                                                                                | S.No | Reg.No.    | Final<br>Internal<br>Marks(25) | Total Final<br>Marks(75) | External<br>Marks(50) | N CO 1      | N CO 2      | N CO 3      | N CO 4      | NCO 5       |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|------------|--------------------------------|--------------------------|-----------------------|-------------|-------------|-------------|-------------|-------------|
| 132         21091A04C5         23         60         37         80         80         80         80         80           133         21091A04C7         22         46         44         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934         8934                                                                                                                                                                     | 131  | 21091A04C4 | 23                             | 48                       | 25                    | 64          | 64          | 64          | 64          | 64          |
| 133         21091A04C6         23         668         45         90.67         90.67         90.67         90.67           134         21091A04C7         22         46         24         61.34         61.34         61.34         61.34         61.34         61.34         61.34         61.34         61.34         61.34         61.34         61.34         61.34         61.34         61.34         61.34         61.34         61.34         61.34         61.34         61.34         80.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34                                                                                                                                | 132  | 21091A04C5 | 23                             | 60                       | 37                    | 80          | 80          | 80          | 80          | 80          |
| 134         21091A04C7         222         46         24         61.34         61.34         61.34         61.34         61.34         61.34         61.34         61.34         61.34         61.34         69.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.3                                                                                                               | 133  | 21091A04C6 | 23                             | 68                       | 45                    | 90.67       | 90.67       | 90.67       | 90.67       | 90.67       |
| 135         22095A0407         23         67         44         89.34         89.34         89.34         99.34         99.34           136         22095A0408         23         53         30         70.67         70.67         70.67         70.67         70.67         70.67           138         22095A0411         23         67         44         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89                                                                                                                                        | 134  | 21091A04C7 | 22                             | 46                       | 24                    | 61.34       | 61.34       | 61.34       | 61.34       | 61.34       |
| 136         22095A0408         23         57         34         70.67         70.67         70.67         70.67         70.67           137         22095A0413         23         57         34         76         76         76         76         76           138         22095A0413         23         66         43         884         883         883         883         883         881         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34<                                                                                                                                                 | 135  | 22095A0407 | 23                             | 67                       | 44                    | 89.34       | 89.34       | 89.34       | 89.34       | 89.34       |
| 137         22095A0409         23         57         34         76         76         76         76         76           138         22095A0413         23         67         44         8934         8934         8934         8934           140         22095A0415         23         61         38         8134         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34 <td< td=""><td>136</td><td>22095A0408</td><td>23</td><td>53</td><td>30</td><td>70.67</td><td>70.67</td><td>70.67</td><td>70.67</td><td>70.67</td></td<> | 136  | 22095A0408 | 23                             | 53                       | 30                    | 70.67       | 70.67       | 70.67       | 70.67       | 70.67       |
| 138         22095A0411         23         66         44         89.34         89.34         89.34         89.34           139         22095A0413         23         66         43         88         88         88         88           140         22095A0417         23         66         43         88         88         88         88         88           141         22095A0422         23         66         44         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34                                                                                                                                                                    | 137  | 22095A0409 | 23                             | 57                       | 34                    | 76          | 76          | 76          | 76          | 76          |
| 139         22095A0413         23         66         43         88         88         88         88         88           140         22095A0417         23         66         43         88         81.34         81.34         81.34         81.34         81.34         81.34           141         22095A0422         23         69         46         92         92         92         92         92         92         92           143         22095A0428         20         64         444         85.34         85.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         85.34         89.34         89.34         89.34         89.34         89.34         89.3                                                                                                                                                                  | 138  | 22095A0411 | 23                             | 67                       | 44                    | 89.34       | 89.34       | 89.34       | 89.34       | 89.34       |
| 140         22095A0415         23         61         38         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34         81.34                                                                                                               | 139  | 22095A0413 | 23                             | 66                       | 43                    | 88          | 88          | 88          | 88          | 88          |
| 141         22095A0417         23         66         43         88         88         88         88         88           142         22095A0422         23         69         46         92         92         92         92           143         22095A0428         20         64         44         85.34         85.34         85.34         85.34         85.34         85.34         85.34         85.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34<                                                                                                                                                 | 140  | 22095A0415 | 23                             | 61                       | 38                    | 81.34       | 81.34       | 81.34       | 81.34       | 81.34       |
| 142         22095A0422         23         69         46         92         92         92         92         92           143         22095A0428         20         64         44         85.34         85.34         85.34         85.34         85.34         85.34         85.34           144         22095A0435         22         49         27         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         65.34         69.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         89.34         189.34         189.34         189.34         189.34         189.34         189.34         189.34         189.34         189.34         189.34         189.34         189.34         189.34         189.34         189.34         189.34         189.34         189.34         189.34         189.34         189.34         189.34         189.34         189.34         189.34         189.34                                                                                                                                        | 141  | 22095A0417 | 23                             | 66                       | 43                    | 88          | 88          | 88          | 88          | 88          |
| 143         22095A0428         20         64         44         85.34         85.34         85.34         85.34         85.34           144         22095A0432         23         68         45         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.61         151         21091A04D         15         211         6         28         28         28         28         28         28         28         28         28         21091A04D         14         22         54.67         54.67         54.67         54.67         56.67         86.67         86.67         86.67         86.67         86.69                                                                                                                                         | 142  | 22095A0422 | 23                             | 69                       | 46                    | 92          | 92          | 92          | 92          | 92          |
| 144         22095A0429         23         68         45         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67         90.67                                                                                                               | 143  | 22095A0428 | 20                             | 64                       | 44                    | 85.34       | 85.34       | 85.34       | 85.34       | 85.34       |
| 14522095A043522492765.3465.3465.3465.3465.3465.3414622095A0436235128686868686814721091A04C818543672727272727214821091A04C924674389.3489.3489.3489.3489.3489.3414921091A04D015216282828282815021091A04D1194526606060606015121091A04D119412254.6754.6754.6754.6715221091A04D319412254.6754.6754.6754.6715321091A04D520432357.3457.3457.3457.3415521091A04D61951326868686815621091A04D72163428484848415721091A04D724674389.3489.3489.3489.3489.3415821091A04D114402653.3453.3453.3453.3453.3415821091A04E1184527606060606016121091A04E119523369.3469.3469.3469.3469.34162210                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 144  | 22095A0429 | 23                             | 68                       | 45                    | 90.67       | 90.67       | 90.67       | 90.67       | 90.67       |
| 14622095A043623512868686868686814721091A04C8185436727272727214821091A04C924674389.3489.3489.3489.3489.3414921091A04D0152162828282815021091A04D1194526606060606015121091A04D2164529606060606015221091A04D319412254.6754.6754.6754.6715321091A04D424654186.6786.6786.6786.6715421091A04D520432357.3457.3457.3457.3415521091A04D721634284848415721091A04D823644185.3485.3485.3415821091A04D914402653.3453.3453.3453.3415921091A04E024674389.3489.3489.3489.3489.3416021091A04E1184527606060606016121091A04E219523369.3469.3469.3469.3469.3416221091A04E320523269.3469.3469.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 145  | 22095A0435 | 22                             | 49                       | 27                    | 65.34       | 65.34       | 65.34       | 65.34       | 65.34       |
| 14721091A04C818543672727272727214821091A04C924674389.3489.3489.3489.3489.3489.3414921091A04D015216282828282815021091A04D1194526606060606015121091A04D319412254.6754.6754.6754.6754.6715321091A04D424654186.6786.6786.6786.6786.6715421091A04D520432357.3457.3457.3457.3457.3415521091A04D61951326868686815621091A04D72163428484848415721091A04D823644185.3485.3485.3485.3415821091A04D914402653.3453.3453.3453.3453.3415921091A04E1184527606060606016121091A04E219523369.3469.3469.3469.3469.3416221091A04E320523269.3469.3469.3469.3469.3416321091A04E315281337.3437.3437.3437.3437.34 <td>146</td> <td>22095A0436</td> <td>23</td> <td>51</td> <td>28</td> <td>68</td> <td>68</td> <td>68</td> <td>68</td> <td>68</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 146  | 22095A0436 | 23                             | 51                       | 28                    | 68          | 68          | 68          | 68          | 68          |
| 14821091A04C924 $67$ 4389.3489.3489.3489.3489.3489.3414921091A04D015216282828282815021091A04D1194526606060606015121091A04D2164529606060606015221091A04D319412254.6754.6754.6754.6754.6715321091A04D424654186.6786.6786.6786.6786.6715421091A04D520432357.3457.3457.3457.3457.3415521091A04D6195132686868686816621091A04D72163428484848415821091A04D823644185.3485.3485.3485.3415921091A04E024674389.3469.3469.3469.3416021091A04E11845276060606016121091A04E219523369.3469.3469.3469.3416221091A04E320523269.3469.3469.3469.3416321091A04E315281337.3437.3437.3437.3416421091A04E51528 <t< td=""><td>147</td><td>21091A04C8</td><td>18</td><td>54</td><td>36</td><td>72</td><td>72</td><td>72</td><td>72</td><td>72</td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 147  | 21091A04C8 | 18                             | 54                       | 36                    | 72          | 72          | 72          | 72          | 72          |
| 14921091A04D015216282828282815021091A04D1194526606060606015121091A04D2164529606060606015221091A04D319412254.6754.6754.6754.6786.6715321091A04D424654186.6786.6786.6786.6786.6715421091A04D520432357.3457.3457.3457.3457.3415521091A04D6195132686868686815621091A04D72163428484848415721091A04D823644185.3485.3485.3485.3415821091A04D014402653.3453.3453.3453.3453.3415921091A04E11845276060606016121091A04E219523369.3469.3469.3469.3416221091A04E320523269.3469.3469.3469.3469.3416321091A04E515281337.3437.3437.3437.3437.3416421091A04E515281337.3437.3437.3437.3437.3416521091A04E5 <td>148</td> <td>21091A04C9</td> <td>24</td> <td>67</td> <td>43</td> <td>89.34</td> <td>89.34</td> <td>89.34</td> <td>89.34</td> <td>89.34</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 148  | 21091A04C9 | 24                             | 67                       | 43                    | 89.34       | 89.34       | 89.34       | 89.34       | 89.34       |
| 15021091A04D119452660606060606015121091A04D2164529606060606015221091A04D319412254.6754.6754.6754.6754.6715321091A04D520432357.3457.3457.3457.3457.3415421091A04D520432357.3457.3457.3457.3457.3415521091A04D6195132686868686815621091A04D7216342848484848415721091A04D823644185.3485.3485.3485.3485.3415821091A04D914402653.3453.3453.3453.3453.3453.3415921091A04E1184527606060606016121091A04E219523369.3469.3469.3469.3416221091A04E320523269.3469.3469.3469.3469.3416321091A04E515281337.3437.3437.3437.3437.3416421091A04E515281337.3437.3437.3437.3437.3416521091A04E617382150.6750.67 <td< td=""><td>149</td><td>21091A04D0</td><td>15</td><td>21</td><td>6</td><td>28</td><td>28</td><td>28</td><td>28</td><td>28</td></td<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 149  | 21091A04D0 | 15                             | 21                       | 6                     | 28          | 28          | 28          | 28          | 28          |
| 15121091A04D216452960606060606015221091A04D319412254.6754.6754.6754.6754.6715321091A04D424654186.6786.6786.6786.6786.6715421091A04D520432357.3457.3457.3457.3457.3457.3415521091A04D619513268686868686815621091A04D72163428484848415721091A04D823644185.3485.3485.3485.3415821091A04D914402653.3453.3453.3453.3453.3415921091A04E024674389.3489.3489.3489.3489.3416021091A04E219523369.3469.3469.3469.3469.3416121091A04E219523269.3469.3469.3469.3469.3416221091A04E320523269.3469.3469.3469.3469.3416321091A04E515281337.3437.3437.3437.3416421091A04E617382150.6750.6750.6750.6716421091A04E6125736767676<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 150  | 21091A04D1 | 19                             | 45                       | 26                    | 60          | 60          | 60          | 60          | 60          |
| 15221091A04D3194122 $54.67$ $54.67$ $54.67$ $54.67$ $54.67$ $54.67$ $54.67$ $54.67$ 15321091A04D424 $65$ 41 $86.67$ $86.67$ $86.67$ $86.67$ $86.67$ 15421091A04D520 $43$ 23 $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ 15521091A04D619 $51$ 32 $68$ $68$ $68$ $68$ $68$ 15521091A04D721 $63$ $42$ $84$ $84$ $84$ $84$ 15721091A04D823 $64$ $41$ $85.34$ $85.34$ $85.34$ $85.34$ 15821091A04D914 $40$ $26$ $53.34$ $53.34$ $53.34$ $53.34$ $53.34$ 16021091A04E024 $67$ 43 $89.34$ $89.34$ $89.34$ $89.34$ $89.34$ 16021091A04E118 $45$ $27$ $60$ $60$ $60$ $60$ 16121091A04E219 $52$ $33$ $69.34$ $69.34$ $69.34$ $69.34$ $69.34$ 16221091A04E320 $52$ $32$ $69.34$ $69.34$ $69.34$ $69.34$ $69.34$ 16321091A04E515 $28$ 13 $37.34$ $37.34$ $37.34$ $37.34$ 16421091A04E515 $28$ 13 $37.34$ $37.34$ $37.34$ $37.34$ 16521091A04E723 $63$ $40$ $84$ <td>151</td> <td>21091A04D2</td> <td>16</td> <td>45</td> <td>29</td> <td>60</td> <td>60</td> <td>60</td> <td>60</td> <td>60</td>                                                                                                                                                                                                                                                                                                                                                                                                              | 151  | 21091A04D2 | 16                             | 45                       | 29                    | 60          | 60          | 60          | 60          | 60          |
| 15321091A04D424 $65$ 41 $86.67$ $86.67$ $86.67$ $86.67$ $86.67$ $86.67$ $86.67$ 15421091A04D520 $43$ 23 $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$ $57.34$                                                                                                                                                                                                                                                                                                                                                               | 152  | 21091A04D3 | 19                             | 41                       | 22                    | 54.67       | 54.67       | 54.67       | 54.67       | 54.67       |
| 15421091A04D520 $43$ 2357.3457.3457.3457.3457.3457.3415521091A04D6195132686868686815621091A04D721 $63$ 42848484848415721091A04D823644185.3485.3485.3485.3485.3415821091A04D914402653.3453.3453.3453.3453.3415921091A04E024674389.3489.3489.3489.3489.3416021091A04E11845276060606016121091A04E219523369.3469.3469.3469.3416221091A04E320523269.3469.3469.3469.3416321091A04E423684590.6790.6790.6790.6716421091A04E515281337.3437.3437.3437.3416521091A04E617382150.6750.6750.6750.6716621091A04E617382153.6485.3485.3485.3416921091A04E612573676767616621091A04E723634184848416721091A04E924674389.3489                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 153  | 21091A04D4 | 24                             | 65                       | 41                    | 86.67       | 86.67       | 86.67       | 86.67       | 86.67       |
| 15521091A04D619 $51$ $32$ $68$ $68$ $68$ $68$ $68$ $68$ 15621091A04D721 $63$ $42$ $84$ $84$ $84$ $84$ $84$ 15721091A04D823 $64$ $41$ $85.34$ $85.34$ $85.34$ $85.34$ $85.34$ $85.34$ $85.34$ $85.34$ 15821091A04D914 $40$ $26$ $53.34$ $53.34$ $53.34$ $53.34$ $53.34$ $53.34$ 15921091A04E0 $24$ $67$ $43$ $89.34$ $89.34$ $89.34$ $89.34$ $89.34$ $89.34$ $89.34$ 16021091A04E1 $18$ $45$ $27$ $60$ $60$ $60$ $60$ $60$ 16121091A04E2 $19$ $52$ $33$ $69.34$ $69.34$ $69.34$ $69.34$ $69.34$ $69.34$ 16221091A04E3 $20$ $52$ $32$ $69.34$ $69.34$ $69.34$ $69.34$ $69.34$ 16321091A04E4 $23$ $68$ $45$ $90.67$ $90.67$ $90.67$ $90.67$ 16421091A04E5 $15$ $28$ $13$ $37.34$ $37.34$ $37.34$ $37.34$ $37.34$ 16521091A04E6 $17$ $38$ $21$ $50.67$ $50.67$ $50.67$ $50.67$ $50.67$ 16621091A04E5 $22$ $64$ $422$ $85.34$ $85.34$ $85.34$ $85.34$ $85.34$ 16821091A04E9 $24$ $67$ $43$ <td>154</td> <td>21091A04D5</td> <td>20</td> <td>43</td> <td>23</td> <td>57.34</td> <td>57.34</td> <td>57.34</td> <td>57.34</td> <td>57.34</td>                                                                                                                                                                                                                                                                                                                                                         | 154  | 21091A04D5 | 20                             | 43                       | 23                    | 57.34       | 57.34       | 57.34       | 57.34       | 57.34       |
| 15621091A04D721 $63$ 42 $84$ $84$ $84$ $84$ $84$ 15721091A04D823 $64$ $41$ $85.34$ $85.34$ $85.34$ $85.34$ $85.34$ 15821091A04D914 $40$ 26 $53.34$ $53.34$ $53.34$ $53.34$ $53.34$ 15921091A04E024 $67$ $43$ $89.34$ $89.34$ $89.34$ $89.34$ $89.34$ 16021091A04E118 $45$ $27$ $60$ $60$ $60$ $60$ 16121091A04E219 $52$ $33$ $69.34$ $69.34$ $69.34$ $69.34$ 16221091A04E320 $52$ $32$ $69.34$ $69.34$ $69.34$ $69.34$ $69.34$ 16321091A04E320 $52$ $32$ $69.34$ $69.34$ $69.34$ $69.34$ $69.34$ 16321091A04E515 $28$ $13$ $37.34$ $37.34$ $37.34$ $37.34$ 16421091A04E515 $28$ $13$ $37.34$ $37.34$ $37.34$ $37.34$ 16521091A04E617 $38$ $21$ $50.67$ $50.67$ $50.67$ $50.67$ $50.67$ 16621091A04E723 $63$ $40$ $84$ $84$ $84$ $84$ 16721091A04E822 $64$ $42$ $85.34$ $85.34$ $85.34$ $85.34$ 16821091A04E924 $67$ $43$ $89.34$ $89.34$ $89.34$ $89.34$ <td>155</td> <td>21091A04D6</td> <td>19</td> <td>51</td> <td>32</td> <td>68</td> <td>68</td> <td>68</td> <td>68</td> <td>68</td>                                                                                                                                                                                                                                                                                                                                                                                                     | 155  | 21091A04D6 | 19                             | 51                       | 32                    | 68          | 68          | 68          | 68          | 68          |
| 15721091A04D823 $64$ 41 $85.34$ $85.34$ $85.34$ $85.34$ $85.34$ 15821091A04D9144026 $53.34$ $53.34$ $53.34$ $53.34$ $53.34$ 15921091A04E024 $67$ 43 $89.34$ $89.34$ $89.34$ $89.34$ $89.34$ $89.34$ 16021091A04E118 $45$ $27$ $60$ $60$ $60$ $60$ $60$ 16121091A04E219 $52$ $33$ $69.34$ $69.34$ $69.34$ $69.34$ $69.34$ 16221091A04E320 $52$ $32$ $69.34$ $69.34$ $69.34$ $69.34$ $69.34$ 16321091A04E423 $68$ $45$ $90.67$ $90.67$ $90.67$ $90.67$ 16421091A04E515 $28$ 13 $37.34$ $37.34$ $37.34$ $37.34$ 16521091A04E617 $38$ $21$ $50.67$ $50.67$ $50.67$ $50.67$ 16621091A04E723 $63$ $40$ $84$ $84$ $84$ $84$ 16721091A04E822 $64$ $42$ $85.34$ $85.34$ $85.34$ $85.34$ 16821091A04E924 $67$ $43$ $89.34$ $89.34$ $89.34$ $89.34$ $89.34$ 16921091A04F021 $57$ $36$ $76$ $76$ $76$ $76$ $76$ 17021091A04F122 $63$ $41$ $84$ $84$ $84$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 156  | 21091A04D7 | 21                             | 63                       | 42                    | 84          | 84          | 84          | 84          | 84          |
| 15821091A04D914402653.3453.3453.3453.3453.3415921091A04E024674389.3489.3489.3489.3489.3489.3416021091A04E1184527606060606016121091A04E219523369.3469.3469.3469.3469.3416221091A04E320523269.3469.3469.3469.3469.3416321091A04E423684590.6790.6790.6790.6790.6716421091A04E515281337.3437.3437.3437.3437.3437.3416521091A04E617382150.6750.6750.6750.6750.6716621091A04E72363408484848416721091A04E822644285.3485.3485.3485.3416821091A04E924674389.3489.3489.3489.3416921091A04E924674389.3489.3489.3489.3416921091A04E924674389.3489.3489.3489.3416921091A04F02157367676767617021091A04F122634184848484171 <td>157</td> <td>21091A04D8</td> <td>23</td> <td>64</td> <td>41</td> <td>85.34</td> <td>85.34</td> <td>85.34</td> <td>85.34</td> <td>85.34</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 157  | 21091A04D8 | 23                             | 64                       | 41                    | 85.34       | 85.34       | 85.34       | 85.34       | 85.34       |
| 15921091A04E024674389.3489.3489.3489.3489.3489.3489.3489.3416021091A04E1184527606060606016121091A04E219523369.3469.3469.3469.3469.3469.3416221091A04E320523269.3469.3469.3469.3469.3469.3416321091A04E423684590.6790.6790.6790.6790.6716421091A04E515281337.3437.3437.3437.3437.3416521091A04E617382150.6750.6750.6750.6750.6716621091A04E72363408484848416721091A04E822644285.3485.3485.3485.3416821091A04E924674389.3489.3489.3489.3489.3416921091A04E924674389.3489.3489.3489.3489.3416921091A04E924674389.3489.3489.3489.3489.3416921091A04F0215736767676767617021091A04F12263418484848417121091A04F325563                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 158  | 21091A04D9 | 14                             | 40                       | 26                    | 53.34       | 53.34       | 53.34       | 53.34       | 53.34       |
| 16021091A04E118452760606060606016121091A04E219523369.3469.3469.3469.3469.3469.3416221091A04E320523269.3469.3469.3469.3469.3469.3416321091A04E423684590.6790.6790.6790.6790.6716421091A04E515281337.3437.3437.3437.3437.3416521091A04E617382150.6750.6750.6750.6750.6716621091A04E72363408484848416721091A04E822644285.3485.3485.3485.3416821091A04E924674389.3489.3489.3489.3416921091A04F02157367676767617021091A04F12263418484848417121091A04F22460368080808017221091A04F325563174.6774.6774.6774.6717321091A04F522492765.3465.3465.3465.3465.3417421091A04F522492765.3465.3465.3465.3465.3465.34<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 159  | 21091A04E0 | 24                             | 67                       | 43                    | 89.34       | 89.34       | 89.34       | 89.34       | 89.34       |
| 16121091A04E219523369.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3469.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.3437.34<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 160  | 21091A04E1 | 18                             | 45                       | 27                    | 60          | 60          | 60          | 60          | 60          |
| 16221091A04E320523269.3469.3469.3469.3469.3469.3416321091A04E423684590.6790.6790.6790.6790.6716421091A04E515281337.3437.3437.3437.3437.3437.3416521091A04E617382150.6750.6750.6750.6750.6716621091A04E72363408484848416721091A04E822644285.3485.3485.3485.3416821091A04E924674389.3489.3489.3489.3416921091A04F02157367676767617021091A04F12263418484848417121091A04F22460368080808017221091A04F325563174.6774.6774.6774.6717321091A04F522492765.3465.3465.3465.3465.3417421091A04F613231030.6730.6730.6730.6730.6717521091A04F625714694.6794.6794.6794.6794.6717621091A04F820604080808080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 161  | 21091A04E2 | 19                             | 52                       | 33                    | 69.34       | 69.34       | 69.34       | 69.34       | 69.34       |
| 16321091A04E423684590.6790.6790.6790.6790.6790.6716421091A04E515281337.3437.3437.3437.3437.3437.3416521091A04E617382150.6750.6750.6750.6750.6716621091A04E7236340848484848416721091A04E822644285.3485.3485.3485.3416821091A04E924674389.3489.3489.3489.3416921091A04F02157367676767617021091A04F12263418484848417121091A04F2246036808080808017221091A04F325563174.6774.6774.6774.6717321091A04F522492765.3465.3465.3465.3465.3417421091A04F522492765.3465.3465.3465.3465.3417421091A04F613231030.6730.6730.6730.6730.6717521091A04F725714694.6794.6794.6794.6794.6717621091A04F82060408080808080 <td>162</td> <td>21091A04E3</td> <td>20</td> <td>52</td> <td>32</td> <td>69.34</td> <td>69.34</td> <td>69.34</td> <td>69.34</td> <td>69.34</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 162  | 21091A04E3 | 20                             | 52                       | 32                    | 69.34       | 69.34       | 69.34       | 69.34       | 69.34       |
| 16421091A04E515281337.3437.3437.3437.3437.3437.3416521091A04E617382150.6750.6750.6750.6750.6716621091A04E7236340848484848416721091A04E822644285.3485.3485.3485.3485.3416821091A04E924674389.3489.3489.3489.3489.3416921091A04F02157367676767617021091A04F12263418484848417121091A04F22460368080808017221091A04F325563174.6774.6774.6774.6717321091A04F522492765.3465.3465.3465.3417421091A04F522492765.3465.3465.3465.3417421091A04F613231030.6730.6730.6730.6717521091A04F725714694.6794.6794.6794.6794.6717621091A04F82060408080808080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 163  | 21091A04E4 | 23                             | 68                       | 45                    | 90.67       | 90.67       | 90.67       | 90.67       | 90.67       |
| 16521091A04E617382150.6750.6750.6750.6750.6716621091A04E7236340848484848416721091A04E822644285.3485.3485.3485.3485.3416821091A04E924674389.3489.3489.3489.3489.3416921091A04F0215736767676767617021091A04F12263418484848417121091A04F22460368080808017221091A04F325563174.6774.6774.6774.6717321091A04F522492765.3465.3465.3465.3465.3417421091A04F522492765.3465.3465.3465.3465.3417521091A04F522714694.6794.6794.6794.6794.6717621091A04F725714694.6794.6794.6794.6794.6717621091A04F82060408080808080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 164  | 21091A04E5 | 15                             | 28                       | 13                    | 37.34       | 37.34       | 37.34       | 37.34       | 37.34       |
| 16621091A04E7236340848484848416721091A04E822644285.3485.3485.3485.3485.3416821091A04E924674389.3489.3489.3489.3489.3416921091A04F02157367676767617021091A04F12263418484848417121091A04F22460368080808017221091A04F325563174.6774.6774.6774.6717321091A04F522492765.3465.3465.3465.3465.3417421091A04F613231030.6730.6730.6730.6730.6717521091A04F82060408080808080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 165  | 21091A04E6 | 17                             | 38                       | 21                    | 50.67       | 50.67       | 50.67       | 50.67       | 50.67       |
| 16721091A04E822644285.3485.3485.3485.3485.3416821091A04E924674389.3489.3489.3489.3489.3416921091A04F02157367676767617021091A04F12263418484848417121091A04F22460368080808017221091A04F325563174.6774.6774.6774.6717321091A04F522492765.3465.3465.3465.3465.3417421091A04F613231030.6730.6730.6730.6730.6717521091A04F725714694.6794.6794.6794.6794.6717621091A04F82060408080808080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 166  | 21091A04E7 | 23                             | 63                       | 40                    | 84          | 84          | 84          | 84          | 84          |
| 16821091A04E924674389.3489.3489.3489.3489.3489.3489.3489.3416921091A04F0215736767676767617021091A04F1226341848484848417121091A04F2246036808080808017221091A04F325563174.6774.6774.6774.6717321091A04F522492765.3465.3465.3465.3465.3417421091A04F613231030.6730.6730.6730.6730.6717521091A04F725714694.6794.6794.6794.6794.6717621091A04F82060408080808080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 167  | 21091A04E8 | 22                             | 04                       | 42                    | 85.34       | 85.34       | 85.34       | 85.34       | 85.34       |
| 16921091A04F02137367676767676767617021091A04F1226341848484848417121091A04F2246036808080808017221091A04F325563174.6774.6774.6774.6717321091A04F522492765.3465.3465.3465.3465.3417421091A04F613231030.6730.6730.6730.6730.6717521091A04F725714694.6794.6794.6794.6794.6717621091A04F82060408080808080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 168  | 21091A04E9 | 24                             | 57                       | 43                    | 89.34       | 89.34       | 89.34       | 89.34       | 89.34       |
| 17021091A04F122634184848484848417121091A04F2246036808080808017221091A04F325563174.6774.6774.6774.6717321091A04F522492765.3465.3465.3465.3465.3417421091A04F613231030.6730.6730.6730.6730.6717521091A04F725714694.6794.6794.6794.6794.6717621091A04F82060408080808080                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 169  | 21091A04F0 | 21                             | 62                       | 36                    | 76          | 76          | 76          | 76          | 76          |
| 1/1       21091A04F2       24       60       36       80       80       80       80       80       80         172       21091A04F3       25       56       31       74.67       74.67       74.67       74.67       74.67         173       21091A04F5       22       49       27       65.34       65.34       65.34       65.34       65.34       65.34       65.34         174       21091A04F6       13       23       10       30.67       30.67       30.67       30.67       30.67         175       21091A04F7       25       71       46       94.67       94.67       94.67       94.67       94.67       94.67         176       21091A04F8       20       60       40       80       80       80       80       80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 170  | 21091A04F1 | 22                             | 60                       | 41                    | 84          | 84          | 84          | 84          | 84          |
| 172       21091A04F3       25       50       31       74.67       74.67       74.67       74.67       74.67         173       21091A04F5       22       49       27       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34                                                                                                                                                                                                               | 1/1  | 21091A04F2 | 24                             | 56                       | 36                    | 80          | 80          | 80          | 80          | 80          |
| 173       21091A04F5       22       17       27       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34       65.34                                                                                                                                                                                               | 172  | 21091A04F3 | 25                             | 49                       | 31                    | 74.67       | /4.6/       | /4.6/       | /4.6/       | /4.6/       |
| 174         21091A04F6         13         23         10         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67         30.67                                                                                                               | 173  | 21091A04F5 | 22                             | 22                       | 27                    | 65.34       | 65.34       | 65.34       | 65.34       | 65.34       |
| 1/5     21091A04F7     25     71     46     94.67     94.67     94.67     94.67       176     21091A04F8     20     60     40     80     80     80     80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 174  | 21091A04F6 | 13                             | 71                       | 10                    | 30.67       | 30.67       | 30.67       | 30.67       | 30.67       |
| 1/0 21091A04F8 20 40 40 80 80 80 80 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 175  | 21091A04F7 | 25                             | 60                       | 40                    | 94.67       | 94.67       | 94.67       | 94.67       | 94.67       |
| 177 2100100460 24 61 27 0124 0124 0124 0124 0124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 170  | 21091A04F8 | 20                             | 61                       | 40<br>27              | 0U<br>Q1 24 |

| S.No | Reg.No.    | Final<br>Internal<br>Marks(25) | Total Final<br>Marks(75) | External<br>Marks(50) | N CO 1 | N CO 2      | N CO 3 | N CO 4 | NCO 5 |
|------|------------|--------------------------------|--------------------------|-----------------------|--------|-------------|--------|--------|-------|
| 178  | 21091A04G0 | 10                             | 25                       | 15                    | 33.34  | 33.34       | 33.34  | 33.34  | 33.34 |
| 179  | 21091A04G1 | 25                             | 53                       | 28                    | 70.67  | 70.67       | 70.67  | 70.67  | 70.67 |
| 180  | 21091A04G2 | 18                             | 48                       | 30                    | 64     | 64          | 64     | 64     | 64    |
| 181  | 21091A04G3 | 12                             | 29                       | 17                    | 38.67  | 38.67       | 38.67  | 38.67  | 38.67 |
| 182  | 21091A04G4 | 15                             | 24                       | 9                     | 32     | 32          | 32     | 32     | 32    |
| 183  | 21091A04G5 | 22                             | 53                       | 31                    | 70.67  | 70.67       | 70.67  | 70.67  | 70.67 |
| 184  | 21091A04G6 | 22                             | 58                       | 36                    | 77.34  | 77.34       | 77.34  | 77.34  | 77.34 |
| 185  | 21091A04G7 | 19                             | 35                       | 16                    | 46.67  | 46.67       | 46.67  | 46.67  | 46.67 |
| 186  | 21091A04G8 | 21                             | 53                       | 32                    | 70.67  | 70.67       | 70.67  | 70.67  | 70.67 |
| 187  | 21091A04G9 | 17                             | 47                       | 30                    | 62.67  | 62.67       | 62.67  | 62.67  | 62.67 |
| 188  | 21091A04H0 | 21                             | 63                       | 42                    | 84     | 84          | 84     | 84     | 84    |
| 189  | 21091A04H1 | 18                             | 59                       | 41                    | 78.67  | 78.67       | 78.67  | 78.67  | 78.67 |
| 190  | 21091A04H2 | 18                             | 34                       | 16                    | 45.34  | 45.34       | 45.34  | 45.34  | 45.34 |
| 191  | 21091A04H3 | 20                             | 51                       | 31                    | 68     | 68          | 68     | 68     | 68    |
| 192  | 21091A04H5 | 21                             | 53                       | 32                    | 70.67  | 70.67       | 70.67  | 70.67  | 70.67 |
| 193  | 21091A04H6 | 20                             | 60                       | 40                    | 80     | 80          | 80     | 80     | 80    |
| 194  | 21091A04H7 | 19                             | 57                       | 38                    | 76     | 76          | 76     | 76     | 76    |
| 195  | 21091A04H8 | 19                             | 36                       | 17                    | 48     | 48          | 48     | 48     | 48    |
| 196  | 21091A04H9 | 25                             | 68                       | 43                    | 90.67  | 90.67       | 90.67  | 90.67  | 90.67 |
| 197  | 21091A04J0 | 25                             | 69                       | 44                    | 92     | 92          | 92     | 92     | 92    |
| 198  | 21091A04J1 | 23                             | 54                       | 31                    | 72     | 72          | 72     | 72     | 72    |
| 199  | 21091A04J2 | 25                             | 53                       | 28                    | 70.67  | 70.67       | 70.67  | 70.67  | 70.67 |
| 200  | 21091A04J3 | 25                             | 61                       | 36                    | 81.34  | 81.34       | 81.34  | 81.34  | 81.34 |
| 201  | 21091A04J4 | 25                             | 62                       | 37                    | 82.67  | 82.67       | 82.67  | 82.67  | 82.67 |
| 202  | 21091A04J5 | 22                             | 54                       | 32                    | 72     | 72          | 72     | 72     | 72    |
| 203  | 21091A04J6 | 20                             | 50                       | 30                    | 66.67  | 66.67       | 66.67  | 66.67  | 66.67 |
| 204  | 21091A04J7 | 25                             | 67                       | 42                    | 89.34  | 89.34       | 89.34  | 89.34  | 89.34 |
| 205  | 21091A04J8 | 24                             | 59                       | 35                    | 78.67  | 78.67       | 78.67  | 78.67  | 78.67 |
| 206  | 21091A04J9 | 22                             | 64                       | 42                    | 85.34  | 85.34 85.34 |        | 85.34  | 85.34 |
| 207  | 22095A0401 | 23                             | 67                       | 44                    | 89.34  | 89.34       | 89.34  | 89.34  | 89.34 |
| 208  | 22095A0405 | 23                             | 58                       | 35                    | 77.34  | 77.34       | 77.34  | 77.34  | 77.34 |
| 209  | 22095A0412 | 23                             | 57                       | 34                    | 76     | 76          | 76     | 76     | 76    |
| 210  | 22095A0414 | 24                             | 58                       | 34                    | 77.34  | 77.34       | 77.34  | 77.34  | 77.34 |
| 211  | 22095A0418 | 22                             | 65                       | 43                    | 86.67  | 86.67       | 86.67  | 86.67  | 86.67 |
| 212  | 22095A0419 | 22                             | 62                       | 40                    | 82.67  | 82.67       | 82.67  | 82.67  | 82.67 |
| 213  | 22095A0421 | 24                             | 67                       | 43                    | 89.34  | 89.34       | 89.34  | 89.34  | 89.34 |
| 214  | 22095A0425 | 24                             | 59                       | 35                    | 78.67  | 78.67       | 78.67  | 78.67  | 78.67 |
| 215  | 22095A0426 | 25                             | 60<br>F(                 | 35                    | 80     | 80          | 80     | 80     | 80    |
| 216  | 22095A0430 | 23                             | 50                       | 33                    | 74.67  | 74.67       | 74.67  | 74.67  | 74.67 |
| 217  | 22095A0432 | 24                             | 20                       | 42                    | 88     | 88          | 88     | 88     | 88    |
| 218  | 22095A0437 | 9                              | 20<br>50                 | 11                    | 26.67  | 26.67       | 26.67  | 26.67  | 26.67 |
| 219  | 19091A04N9 | 22                             | 10<br>10                 | 36                    | 77.34  | 77.34       | 77.34  | 77.34  | 77.34 |
| 220  | 20091A04A1 | 10                             | 10<br>64                 | 8                     | 24     | 24          | 24     | 24     | 24    |
| 221  | 20091A04M4 | 24                             | 68                       | 40                    | 85.34  | 85.34       | 85.34  | 85.34  | 85.34 |
| 222  | 21091A04K0 | 24                             | 65                       | 44                    | 90.67  | 90.67       | 90.67  | 90.67  | 90.67 |
| 223  | 21091A04K1 | 20                             | 68                       | 45                    | 86.67  | 86.67       | 86.67  | 86.67  | 86.67 |
| 224  | 21091A04KZ | 22                             | 00                       | 46                    | 90.67  | 90.67       | 90.67  | 90.67  | 90.67 |

| S.No | Reg.No.    | Final<br>Internal<br>Marks(25) | Total Final<br>Marks(75) | External<br>Marks(50) | N CO 1      | N CO 2      | N CO 3 | N CO 4 | NCO 5 |
|------|------------|--------------------------------|--------------------------|-----------------------|-------------|-------------|--------|--------|-------|
| 225  | 21091A04K3 | 22                             | 65                       | 43                    | 86.67       | 86.67       | 86.67  | 86.67  | 86.67 |
| 226  | 21091A04K4 | 20                             | 30                       | 10                    | 40          | 40          | 40     | 40     | 40    |
| 227  | 21091A04K6 | 10                             | 15                       | 5                     | 20          | 20          | 20     | 20     | 20    |
| 228  | 21091A04K7 | 16                             | 52                       | 36                    | 69.34       | 69.34       | 69.34  | 69.34  | 69.34 |
| 229  | 21091A04K8 | 21                             | 61                       | 40                    | 81.34       | 81.34       | 81.34  | 81.34  | 81.34 |
| 230  | 21091A04K9 | 19                             | 49                       | 30                    | 65.34       | 65.34       | 65.34  | 65.34  | 65.34 |
| 231  | 21091A04M0 | 21                             | 64                       | 43                    | 85.34       | 85.34       | 85.34  | 85.34  | 85.34 |
| 232  | 21091A04M1 | 22                             | 69                       | 47                    | 92          | 92          | 92     | 92     | 92    |
| 233  | 21091A04M2 | 24                             | 64                       | 40                    | 85.34       | 85.34       | 85.34  | 85.34  | 85.34 |
| 234  | 21091A04M3 | 22                             | 62                       | 40                    | 82.67       | 82.67       | 82.67  | 82.67  | 82.67 |
| 235  | 21091A04M4 | 15                             | 47                       | 32                    | 62.67       | 62.67       | 62.67  | 62.67  | 62.67 |
| 236  | 21091A04M6 | 24                             | 72                       | 48                    | 96          | 96          | 96     | 96     | 96    |
| 237  | 21091A04M7 | 24                             | 71                       | 47                    | 94.67       | 94.67       | 94.67  | 94.67  | 94.67 |
| 238  | 21091A04M8 | 22                             | 57                       | 35                    | 76          | 76          | 76     | 76     | 76    |
| 239  | 21091A04M9 | 17                             | 47                       | 30                    | 62.67       | 62.67       | 62.67  | 62.67  | 62.67 |
| 240  | 21091A04N0 | 22                             | 57                       | 35                    | 76          | 76          | 76     | 76     | 76    |
| 241  | 21091A04N1 | 20                             | 31                       | 11                    | 41.34       | 41.34       | 41.34  | 41.34  | 41.34 |
| 242  | 21091A04N2 | 20                             | 60                       | 40                    | 80          | 80          | 80     | 80     | 80    |
| 243  | 21091A04N3 | 19                             | 52                       | 33                    | 69.34       | 69.34       | 69.34  | 69.34  | 69.34 |
| 244  | 21091A04N4 | 23                             | 69                       | 46                    | 92          | 92          | 92     | 92     | 92    |
| 245  | 21091A04N5 | 22                             | 63                       | 41                    | 84          | 84          | 84     | 84     | 84    |
| 246  | 21091A04N7 | 17                             | 54                       | 37                    | 72          | 72          | 72     | 72     | 72    |
| 247  | 21091A04N8 | 23                             | 69                       | 46                    | 92          | 92          | 92     | 92     | 92    |
| 248  | 21091A04N9 | 24                             | 68                       | 44                    | 90.67       | 90.67       | 90.67  | 90.67  | 90.67 |
| 249  | 21091A04P0 | 18                             | 51                       | 33                    | 68          | 68          | 68     | 68     | 68    |
| 250  | 21091A04P1 | 23                             | 70                       | 47                    | 93.34       | 93.34 93.34 |        | 93.34  | 93.34 |
| 251  | 21091A04P2 | 23                             | 69                       | 46                    | 92 92       |             | 92     | 92     | 92    |
| 252  | 21091A04P3 | 24                             | 70                       | 46                    | 93.34 93.34 |             | 93.34  | 93.34  | 93.34 |
| 253  | 21091A04P4 | 21                             | 57                       | 36                    | 76          | 76 76       |        | 76     | 76    |
| 254  | 21091A04P5 | 19                             | 54                       | 35                    | 72          | 72          | 72     | 72     | 72    |
| 255  | 21091A04P6 | 23                             | 67                       | 44                    | 89.34       | 89.34       | 89.34  | 89.34  | 89.34 |
| 256  | 21091A04P8 | 24                             | 70                       | 46                    | 93.34       | 93.34       | 93.34  | 93.34  | 93.34 |
| 257  | 21091A04P9 | 23                             | 68                       | 45                    | 90.67       | 90.67       | 90.67  | 90.67  | 90.67 |
| 258  | 21091A04Q0 | 22                             | 65                       | 43                    | 86.67       | 86.67       | 86.67  | 86.67  | 86.67 |
| 259  | 21091A04Q1 | 23                             | 70                       | 47                    | 93.34       | 93.34       | 93.34  | 93.34  | 93.34 |
| 260  | 21091A04Q2 | 22                             | 61                       | 39                    | 81.34       | 81.34       | 81.34  | 81.34  | 81.34 |
| 261  | 21091A04Q4 | 23                             | 62                       | 39                    | 82.67       | 82.67       | 82.67  | 82.67  | 82.67 |
| 262  | 21091A04Q5 | 21                             | 58                       | 37                    | 77.34       | 77.34       | 77.34  | 77.34  | 77.34 |
| 263  | 21091A04Q6 | 20                             | 50                       | 30                    | 66.67       | 66.67       | 66.67  | 66.67  | 66.67 |
| 264  | 21091A04Q7 | 21                             | 62                       | 41                    | 82.67       | 82.67       | 82.67  | 82.67  | 82.67 |
| 265  | 21091A04Q8 | 22                             | 03                       | 41                    | 84          | 84          | 84     | 84     | 84    |
| 266  | 21091A04Q9 | 21                             | 4ð<br>20                 | 27                    | 64          | 64          | 64     | 64     | 64    |
| 267  | 21091A04R0 | 10                             | 30                       | 26                    | 48          | 48          | 48     | 48     | 48    |
| 268  | 21091A04R1 | 19                             | 49                       | 30                    | 65.34       | 65.34       | 65.34  | 65.34  | 65.34 |
| 269  | 21091A04R2 | 21                             | 30                       | 35                    | 74.67       | 74.67       | 74.67  | 74.67  | 74.67 |
| 270  | 21091A04R4 | 21                             | 49                       | 28                    | 65.34       | 65.34       | 65.34  | 65.34  | 65.34 |
| 271  | 21091A04R5 | 24                             | 00                       | 44                    | 90.67       | 90.67       | 90.67  | 90.67  | 90.67 |

| S.No | Reg.No.    | Final<br>Internal<br>Marks(25) | Total Final<br>Marks(75) | External<br>Marks(50) | N CO 1 | N CO 2 | N CO 3 | N CO 4 | NCO 5 |
|------|------------|--------------------------------|--------------------------|-----------------------|--------|--------|--------|--------|-------|
| 272  | 21091A04R6 | 18                             | 61                       | 43                    | 81.34  | 81.34  | 81.34  | 81.34  | 81.34 |
| 273  | 21091A04R7 | 21                             | 51                       | 30                    | 68     | 68     | 68     | 68     | 68    |
| 274  | 21091A04R8 | 21                             | 51                       | 30                    | 68     | 68     | 68     | 68     | 68    |
| 275  | 21091A04R9 | 24                             | 70                       | 46                    | 93.34  | 93.34  | 93.34  | 93.34  | 93.34 |
| 276  | 21091A04S0 | 17                             | 56                       | 39                    | 74.67  | 74.67  | 74.67  | 74.67  | 74.67 |
| 277  | 22095A0423 | 24                             | 70                       | 46                    | 93.34  | 93.34  | 93.34  | 93.34  | 93.34 |
| 278  | 22095A0431 | 23                             | 66                       | 43                    | 88     | 88     | 88     | 88     | 88    |
| 279  | 22095A0434 | 24                             | 60                       | 36                    | 80     | 80     | 80     | 80     | 80    |

## **<u>CO-PO Calculation</u>**

|                          | CO 1                           |                     | CO 2                           |                     | C                              | 03                  | C                              | 04                  | C05                            |                     |  |
|--------------------------|--------------------------------|---------------------|--------------------------------|---------------------|--------------------------------|---------------------|--------------------------------|---------------------|--------------------------------|---------------------|--|
|                          | No. of<br>students<br>Attained | Weightage<br>Points |  |
| >60%                     | 235                            | 3                   | 235                            | 3                   | 235                            | 3                   | 235                            | 3                   | 235                            | 3                   |  |
| 40% to 60%               | 30                             | 2                   | 30                             | 2                   | 30                             | 2                   | 30                             | 2                   | 30                             | 2                   |  |
| <40%                     | 13                             | 1                   | 13                             | 1                   | 13                             | 1                   | 13                             | 1                   | 13                             | 1                   |  |
| Total No. of<br>students | 278                            |                     | 278                            |                     | 278                            |                     | 278                            |                     | 278                            |                     |  |
| Atainment<br>value       |                                | 2.80                |                                | 2.80                |                                | 2.80                |                                | 2.80                |                                | 2.80                |  |
| % of<br>Attainment       |                                | 84.53               |                                | 84.53               |                                | 84.53               |                                | 84.53               |                                | 84.53               |  |
| Attained or<br>not       |                                | YES                 |  |

| CO          | <b>CO Attainment Value</b> | PO 1 | PO 2 | PO 3 | PO 4 | PO 5 | P0 6 | PO 7 | PO 8 | PO 9 | PO 10 | PO 11 | PO 12 | <b>PSO 1</b> | PSO 2 | <b>PSO 3</b> |
|-------------|----------------------------|------|------|------|------|------|------|------|------|------|-------|-------|-------|--------------|-------|--------------|
| <b>CO 1</b> | 2.80                       | 3    |      |      |      | 2    |      |      |      | 3    |       |       |       | 2            |       | 1            |
| <b>CO 2</b> | 2.80                       | 3    | 1    | 2    |      | 2    |      |      |      | 3    |       |       |       | 2            | 1     |              |
| <b>CO 3</b> | 2.80                       | 3    | 3    | 2    | 2    | 1    | 2    |      |      | 3    |       | 2     |       | 2            | 2     |              |
| <b>CO 4</b> | 2.80                       | 3    | 1    | 1    | 1    |      | 1    |      |      | 3    |       |       |       | 1            | 2     | 1            |
| CO 5        | 2.80                       | 3    | 2    | 1    | 2    |      | 2    |      |      | 3    |       | 2     |       | 1            | 1     | 1            |
|             |                            |      |      |      |      |      |      |      |      |      |       |       |       |              |       |              |
|             | EDC LAB                    | 2.80 | 2.80 | 2.80 | 2.80 | 2.80 | 2.80 | -    | -    | 2.80 | -     | 2.80  | -     | 2.80         | 2.80  | 2.80         |